253 lines
5.7 KiB
Go
253 lines
5.7 KiB
Go
package classify
|
|
|
|
import (
|
|
"io/ioutil"
|
|
"sync"
|
|
"testing"
|
|
|
|
"github.com/photoprism/photoprism/pkg/fs"
|
|
tensorflow "github.com/tensorflow/tensorflow/tensorflow/go"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
var assetsPath = fs.Abs("../../assets")
|
|
var modelPath = assetsPath + "/nasnet"
|
|
var examplesPath = assetsPath + "/examples"
|
|
var once sync.Once
|
|
var testInstance *TensorFlow
|
|
|
|
// NewTest returns a new TensorFlow test instance.
|
|
func NewTest(t *testing.T) *TensorFlow {
|
|
once.Do(func() {
|
|
testInstance = New(assetsPath, false)
|
|
if err := testInstance.loadModel(); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
})
|
|
|
|
return testInstance
|
|
}
|
|
|
|
func TestTensorFlow_LabelsFromFile(t *testing.T) {
|
|
t.Run("chameleon_lime.jpg", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
|
|
|
|
assert.Nil(t, err)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
assert.NotNil(t, result)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
t.Log(result)
|
|
|
|
assert.Equal(t, "chameleon", result[0].Name)
|
|
|
|
assert.Equal(t, 7, result[0].Uncertainty)
|
|
})
|
|
t.Run("not existing file", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
result, err := tensorFlow.File(examplesPath + "/notexisting.jpg")
|
|
assert.Contains(t, err.Error(), "no such file or directory")
|
|
assert.Empty(t, result)
|
|
})
|
|
t.Run("disabled true", func(t *testing.T) {
|
|
tensorFlow := New(assetsPath, true)
|
|
|
|
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
|
|
assert.Nil(t, err)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
assert.Nil(t, result)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 0, len(result))
|
|
|
|
t.Log(result)
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_Labels(t *testing.T) {
|
|
if testing.Short() {
|
|
t.Skip("skipping test in short mode.")
|
|
}
|
|
|
|
t.Run("chameleon_lime.jpg", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
t.Log(result)
|
|
|
|
assert.NotNil(t, result)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
assert.Equal(t, "chameleon", result[0].Name)
|
|
|
|
assert.Equal(t, 100-93, result[0].Uncertainty)
|
|
}
|
|
})
|
|
t.Run("dog_orange.jpg", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
t.Log(result)
|
|
|
|
assert.NotNil(t, result)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
assert.Equal(t, "dog", result[0].Name)
|
|
|
|
assert.Equal(t, 34, result[0].Uncertainty)
|
|
}
|
|
})
|
|
t.Run("Random.docx", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
assert.Empty(t, result)
|
|
assert.Error(t, err)
|
|
}
|
|
})
|
|
t.Run("6720px_white.jpg", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
assert.Empty(t, result)
|
|
}
|
|
})
|
|
t.Run("disabled true", func(t *testing.T) {
|
|
tensorFlow := New(assetsPath, true)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
t.Log(result)
|
|
|
|
assert.Nil(t, result)
|
|
|
|
assert.Nil(t, err)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 0, len(result))
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_LoadModel(t *testing.T) {
|
|
t.Run("model loaded", func(t *testing.T) {
|
|
tf := NewTest(t)
|
|
assert.True(t, tf.ModelLoaded())
|
|
})
|
|
t.Run("model path does not exist", func(t *testing.T) {
|
|
tensorFlow := New(assetsPath+"foo", false)
|
|
if err := tensorFlow.loadModel(); err != nil {
|
|
assert.Contains(t, err.Error(), "Could not find SavedModel")
|
|
} else {
|
|
t.Fatal("err should NOT be nil")
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_BestLabels(t *testing.T) {
|
|
t.Run("labels not loaded", func(t *testing.T) {
|
|
tensorFlow := New(assetsPath, false)
|
|
|
|
p := make([]float32, 1000)
|
|
|
|
p[666] = 0.5
|
|
|
|
result := tensorFlow.bestLabels(p)
|
|
assert.Empty(t, result)
|
|
})
|
|
t.Run("labels loaded", func(t *testing.T) {
|
|
tensorFlow := New(assetsPath, false)
|
|
|
|
if err := tensorFlow.loadLabels(modelPath); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
p := make([]float32, 1000)
|
|
|
|
p[8] = 0.7
|
|
p[1] = 0.5
|
|
|
|
result := tensorFlow.bestLabels(p)
|
|
assert.Equal(t, "chicken", result[0].Name)
|
|
assert.Equal(t, "bird", result[0].Categories[0])
|
|
assert.Equal(t, "image", result[0].Source)
|
|
t.Log(result)
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_MakeTensor(t *testing.T) {
|
|
t.Run("cat_brown.jpg", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
imageBuffer, err := ioutil.ReadFile(examplesPath + "/cat_brown.jpg")
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
result, err := tensorFlow.createTensor(imageBuffer, "jpeg")
|
|
assert.Equal(t, tensorflow.DataType(0x1), result.DataType())
|
|
assert.Equal(t, int64(1), result.Shape()[0])
|
|
assert.Equal(t, int64(224), result.Shape()[2])
|
|
})
|
|
t.Run("Random.docx", func(t *testing.T) {
|
|
tensorFlow := NewTest(t)
|
|
|
|
imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx")
|
|
assert.Nil(t, err)
|
|
result, err := tensorFlow.createTensor(imageBuffer, "jpeg")
|
|
|
|
assert.Empty(t, result)
|
|
assert.EqualError(t, err, "image: unknown format")
|
|
})
|
|
}
|
|
|
|
func Test_convertValue(t *testing.T) {
|
|
result := convertValue(uint32(98765432))
|
|
assert.Equal(t, float32(3024.898), result)
|
|
}
|