photoprism/internal/classify/tensorflow_test.go
Michael Mayer b62af742ae Backend: Improve log messages
Signed-off-by: Michael Mayer <michael@liquidbytes.net>
2020-07-14 18:00:32 +02:00

254 lines
5.7 KiB
Go

package classify
import (
"io/ioutil"
"sync"
"testing"
"github.com/photoprism/photoprism/pkg/fs"
tensorflow "github.com/tensorflow/tensorflow/tensorflow/go"
"github.com/stretchr/testify/assert"
)
var assetsPath = fs.Abs("../../assets")
var modelPath = assetsPath + "/nasnet"
var examplesPath = assetsPath + "/examples"
var once sync.Once
var testInstance *TensorFlow
// NewTest returns a new TensorFlow test instance.
func NewTest(t *testing.T) *TensorFlow {
once.Do(func() {
testInstance = New(assetsPath, false)
if err := testInstance.loadModel(); err != nil {
t.Fatal(err)
}
})
return testInstance
}
func TestTensorFlow_LabelsFromFile(t *testing.T) {
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := NewTest(t)
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
assert.Nil(t, err)
if err != nil {
t.Fatal(err)
}
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
t.Log(result)
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 7, result[0].Uncertainty)
})
t.Run("not existing file", func(t *testing.T) {
tensorFlow := NewTest(t)
result, err := tensorFlow.File(examplesPath + "/notexisting.jpg")
assert.Contains(t, err.Error(), "no such file or directory")
assert.Empty(t, result)
})
t.Run("disabled true", func(t *testing.T) {
tensorFlow := New(assetsPath, true)
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
assert.Nil(t, err)
if err != nil {
t.Fatal(err)
}
assert.Nil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
t.Log(result)
})
}
func TestTensorFlow_Labels(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode.")
}
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := NewTest(t)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 100-93, result[0].Uncertainty)
}
})
t.Run("dog_orange.jpg", func(t *testing.T) {
tensorFlow := NewTest(t)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
t.Log(result)
assert.NotNil(t, result)
if err != nil {
t.Fatal(err)
}
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
assert.Equal(t, "dog", result[0].Name)
assert.Equal(t, 34, result[0].Uncertainty)
}
})
t.Run("Random.docx", func(t *testing.T) {
tensorFlow := NewTest(t)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
assert.Empty(t, result)
assert.Error(t, err)
}
})
t.Run("6720px_white.jpg", func(t *testing.T) {
tensorFlow := NewTest(t)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
if err != nil {
t.Fatal(err)
}
assert.Empty(t, result)
}
})
t.Run("disabled true", func(t *testing.T) {
tensorFlow := New(assetsPath, true)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
t.Log(result)
assert.Nil(t, result)
assert.Nil(t, err)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 0, len(result))
}
})
}
func TestTensorFlow_LoadModel(t *testing.T) {
t.Run("model loaded", func(t *testing.T) {
tf := NewTest(t)
assert.True(t, tf.ModelLoaded())
})
t.Run("model path does not exist", func(t *testing.T) {
tensorFlow := New(assetsPath+"foo", false)
if err := tensorFlow.loadModel(); err != nil {
assert.Contains(t, err.Error(), "Could not find SavedModel")
} else {
t.Fatal("err should NOT be nil")
}
})
}
func TestTensorFlow_BestLabels(t *testing.T) {
t.Run("labels not loaded", func(t *testing.T) {
tensorFlow := New(assetsPath, false)
p := make([]float32, 1000)
p[666] = 0.5
result := tensorFlow.bestLabels(p)
assert.Empty(t, result)
})
t.Run("labels loaded", func(t *testing.T) {
tensorFlow := New(assetsPath, false)
if err := tensorFlow.loadLabels(modelPath); err != nil {
t.Fatal(err)
}
p := make([]float32, 1000)
p[8] = 0.7
p[1] = 0.5
result := tensorFlow.bestLabels(p)
assert.Equal(t, "chicken", result[0].Name)
assert.Equal(t, "bird", result[0].Categories[0])
assert.Equal(t, "image", result[0].Source)
t.Log(result)
})
}
func TestTensorFlow_MakeTensor(t *testing.T) {
t.Run("cat_brown.jpg", func(t *testing.T) {
tensorFlow := NewTest(t)
imageBuffer, err := ioutil.ReadFile(examplesPath + "/cat_brown.jpg")
if err != nil {
t.Fatal(err)
}
result, err := tensorFlow.createTensor(imageBuffer, "jpeg")
assert.Equal(t, tensorflow.DataType(0x1), result.DataType())
assert.Equal(t, int64(1), result.Shape()[0])
assert.Equal(t, int64(224), result.Shape()[2])
})
t.Run("Random.docx", func(t *testing.T) {
tensorFlow := NewTest(t)
imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx")
assert.Nil(t, err)
result, err := tensorFlow.createTensor(imageBuffer, "jpeg")
assert.Empty(t, result)
assert.EqualError(t, err, "image: unknown format")
})
}
func Test_ConvertTF(t *testing.T) {
result := convertTF(uint32(98765432))
assert.Equal(t, float32(3024.898), result)
}