photoprism/internal/face/embedding.go

75 lines
1.5 KiB
Go

package face
import (
"encoding/json"
"strings"
"github.com/photoprism/photoprism/pkg/clusters"
)
// Embedding represents a face embedding.
type Embedding []float64
var NullEmbedding = make(Embedding, 512)
// NewEmbedding creates a new embedding from an inference result.
func NewEmbedding(inference []float32) Embedding {
result := make(Embedding, len(inference))
var v float32
var i int
for i, v = range inference {
result[i] = float64(v)
}
return result
}
// Blacklisted tests if the embedding is blacklisted.
func (m Embedding) Blacklisted() bool {
return Blacklist.Contains(m, BlacklistRadius)
}
// Distance calculates the distance to another embedding.
func (m Embedding) Distance(other Embedding) float64 {
return clusters.EuclideanDistance(m, other)
}
// Magnitude returns the embedding vector length (magnitude).
func (m Embedding) Magnitude() float64 {
return m.Distance(NullEmbedding)
}
// NotBlacklisted tests if the embedding is not blacklisted.
func (m Embedding) NotBlacklisted() bool {
return !m.Blacklisted()
}
// JSON returns the embedding as JSON bytes.
func (m Embedding) JSON() []byte {
var noResult = []byte("")
if len(m) < 1 {
return noResult
}
if result, err := json.Marshal(m); err != nil {
return noResult
} else {
return result
}
}
// UnmarshalEmbedding parses a single face embedding JSON.
func UnmarshalEmbedding(s string) (result Embedding) {
if !strings.HasPrefix(s, "[") {
return nil
}
if err := json.Unmarshal([]byte(s), &result); err != nil {
log.Errorf("faces: %s", err)
}
return result
}