41b252d820
Adds two unofficial env variables so advanced users can experiment: 1. PHOTOPRISM_FACE_KIDS_DIST=0.6950 (range: 0.1-1.5, -1 to disable) 2. PHOTOPRISM_FACE_IGNORE_DIST=0.86 (range: 0.1-1.5, -1 to disable)
286 lines
4.3 KiB
Go
286 lines
4.3 KiB
Go
package clusters
|
|
|
|
import (
|
|
"sync"
|
|
)
|
|
|
|
type dbscanClusterer struct {
|
|
minpts, workers int
|
|
eps float64
|
|
|
|
distance DistFunc
|
|
|
|
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
|
|
mu sync.RWMutex
|
|
// groups for dateset
|
|
a []int
|
|
b []int
|
|
|
|
// variables used for concurrent computation of nearest neighbours
|
|
// dataset len
|
|
l int
|
|
// worker number
|
|
s int
|
|
// work number for per worker
|
|
f int
|
|
j chan *rangeJob
|
|
m *sync.Mutex
|
|
w *sync.WaitGroup
|
|
// current point near
|
|
r *[]int
|
|
// current point
|
|
p []float64
|
|
|
|
// visited points
|
|
v []bool
|
|
|
|
// dataset
|
|
d [][]float64
|
|
}
|
|
|
|
// Implementation of DBSCAN algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently
|
|
// is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily.
|
|
func DBSCAN(minpts int, eps float64, workers int, distance DistFunc) (HardClusterer, error) {
|
|
if minpts < 1 {
|
|
return nil, errZeroMinpts
|
|
}
|
|
|
|
if workers < 0 {
|
|
return nil, errZeroWorkers
|
|
}
|
|
|
|
if eps <= 0 {
|
|
return nil, errZeroEpsilon
|
|
}
|
|
|
|
var d DistFunc
|
|
{
|
|
if distance != nil {
|
|
d = distance
|
|
} else {
|
|
d = EuclideanDist
|
|
}
|
|
}
|
|
|
|
return &dbscanClusterer{
|
|
minpts: minpts,
|
|
workers: workers,
|
|
eps: eps,
|
|
distance: d,
|
|
}, nil
|
|
}
|
|
|
|
func (c *dbscanClusterer) IsOnline() bool {
|
|
return false
|
|
}
|
|
|
|
func (c *dbscanClusterer) WithOnline(o Online) HardClusterer {
|
|
return c
|
|
}
|
|
|
|
func (c *dbscanClusterer) Learn(data [][]float64) error {
|
|
if len(data) == 0 {
|
|
return errEmptySet
|
|
}
|
|
|
|
c.mu.Lock()
|
|
|
|
c.l = len(data)
|
|
c.s = c.numWorkers()
|
|
c.f = c.l / c.s
|
|
|
|
c.d = data
|
|
|
|
c.v = make([]bool, c.l)
|
|
|
|
c.a = make([]int, c.l)
|
|
c.b = make([]int, 0)
|
|
|
|
c.startNearestWorkers()
|
|
|
|
c.run()
|
|
|
|
c.endNearestWorkers()
|
|
|
|
c.v = nil
|
|
c.p = nil
|
|
c.r = nil
|
|
|
|
c.mu.Unlock()
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *dbscanClusterer) Sizes() []int {
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.b
|
|
}
|
|
|
|
func (c *dbscanClusterer) Guesses() []int {
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.a
|
|
}
|
|
|
|
func (c *dbscanClusterer) Predict(p []float64) int {
|
|
var (
|
|
l int
|
|
d float64
|
|
m float64 = c.distance(p, c.d[0])
|
|
)
|
|
|
|
for i := 1; i < len(c.d); i++ {
|
|
if d = c.distance(p, c.d[i]); d < m {
|
|
m = d
|
|
l = i
|
|
}
|
|
}
|
|
|
|
return c.a[l]
|
|
}
|
|
|
|
func (c *dbscanClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent {
|
|
return nil
|
|
}
|
|
|
|
// private
|
|
func (c *dbscanClusterer) run() {
|
|
var (
|
|
n, m, l, k = 1, 0, 0, 0
|
|
ns, nss = make([]int, 0), make([]int, 0)
|
|
)
|
|
|
|
for i := 0; i < c.l; i++ {
|
|
if c.v[i] {
|
|
continue
|
|
}
|
|
|
|
c.v[i] = true
|
|
|
|
c.nearest(i, &l, &ns)
|
|
|
|
if l < c.minpts {
|
|
c.a[i] = -1
|
|
} else {
|
|
c.a[i] = n
|
|
|
|
c.b = append(c.b, 0)
|
|
c.b[m]++
|
|
|
|
for j := 0; j < l; j++ {
|
|
if !c.v[ns[j]] {
|
|
c.v[ns[j]] = true
|
|
|
|
c.nearest(ns[j], &k, &nss)
|
|
|
|
if k >= c.minpts {
|
|
l += k
|
|
ns = append(ns, nss...)
|
|
}
|
|
}
|
|
|
|
if c.a[ns[j]] == 0 {
|
|
c.a[ns[j]] = n
|
|
c.b[m]++
|
|
}
|
|
}
|
|
|
|
n++
|
|
m++
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Divide work among c.s workers, where c.s is determined
|
|
* by the size of the data. This is based on an assumption that neighbour points of p
|
|
* are located in relatively small subsection of the input data, so the dataset can be scanned
|
|
* concurrently without blocking a big number of goroutines trying to write to r */
|
|
func (c *dbscanClusterer) nearest(p int, l *int, r *[]int) {
|
|
var b int
|
|
|
|
*r = (*r)[:0]
|
|
|
|
c.p = c.d[p]
|
|
c.r = r
|
|
|
|
for i := 0; i < c.l; i += c.f {
|
|
if c.l-i <= c.f {
|
|
b = c.l
|
|
} else {
|
|
b = i + c.f
|
|
}
|
|
|
|
c.w.Add(1)
|
|
c.j <- &rangeJob{
|
|
a: i,
|
|
b: b,
|
|
}
|
|
}
|
|
|
|
c.w.Wait()
|
|
|
|
*l = len(*r)
|
|
}
|
|
|
|
func (c *dbscanClusterer) startNearestWorkers() {
|
|
c.j = make(chan *rangeJob, c.l)
|
|
|
|
c.m = &sync.Mutex{}
|
|
c.w = &sync.WaitGroup{}
|
|
|
|
for i := 0; i < c.s; i++ {
|
|
go c.nearestWorker()
|
|
}
|
|
}
|
|
|
|
func (c *dbscanClusterer) endNearestWorkers() {
|
|
close(c.j)
|
|
|
|
c.j = nil
|
|
|
|
c.m = nil
|
|
c.w = nil
|
|
}
|
|
|
|
func (c *dbscanClusterer) nearestWorker() {
|
|
for j := range c.j {
|
|
for i := j.a; i < j.b; i++ {
|
|
if c.distance(c.p, c.d[i]) < c.eps {
|
|
c.m.Lock()
|
|
*c.r = append(*c.r, i)
|
|
c.m.Unlock()
|
|
}
|
|
}
|
|
|
|
c.w.Done()
|
|
}
|
|
}
|
|
|
|
func (c *dbscanClusterer) numWorkers() int {
|
|
var b int
|
|
|
|
if c.l < 1000 {
|
|
b = 1
|
|
} else if c.l < 10000 {
|
|
b = 10
|
|
} else if c.l < 100000 {
|
|
b = 100
|
|
} else {
|
|
b = 1000
|
|
}
|
|
|
|
if c.workers == 0 {
|
|
return b
|
|
}
|
|
|
|
if c.workers < b {
|
|
return c.workers
|
|
}
|
|
|
|
return b
|
|
|
|
}
|