173 lines
3.9 KiB
Go
173 lines
3.9 KiB
Go
package face
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"image"
|
|
"io/ioutil"
|
|
"path"
|
|
"path/filepath"
|
|
"runtime/debug"
|
|
"sync"
|
|
|
|
"github.com/disintegration/imaging"
|
|
"github.com/photoprism/photoprism/pkg/txt"
|
|
tf "github.com/tensorflow/tensorflow/tensorflow/go"
|
|
)
|
|
|
|
// Net is a wrapper for the TensorFlow Facenet model.
|
|
type Net struct {
|
|
model *tf.SavedModel
|
|
modelPath string
|
|
disabled bool
|
|
modelName string
|
|
modelTags []string
|
|
mutex sync.Mutex
|
|
}
|
|
|
|
// NewNet returns new TensorFlow instance with Facenet model.
|
|
func NewNet(modelPath string, disabled bool) *Net {
|
|
return &Net{modelPath: modelPath, disabled: disabled, modelTags: []string{"serve"}}
|
|
}
|
|
|
|
// Detect runs the detection and facenet algorithms over the provided source image.
|
|
func (t *Net) Detect(fileName string) (faces Faces, err error) {
|
|
faces, err = Detect(fileName)
|
|
|
|
if err != nil {
|
|
return faces, err
|
|
}
|
|
|
|
if t.disabled {
|
|
return faces, nil
|
|
}
|
|
|
|
err = t.loadModel()
|
|
|
|
if err != nil {
|
|
return faces, err
|
|
}
|
|
|
|
for i, f := range faces {
|
|
if f.Face.Col == 0 && f.Face.Row == 0 {
|
|
continue
|
|
}
|
|
|
|
embedding := t.getFaceEmbedding(fileName, f.Face)
|
|
|
|
if len(embedding) > 0 {
|
|
faces[i].Embedding = embedding[0]
|
|
}
|
|
}
|
|
|
|
return faces, nil
|
|
}
|
|
|
|
// ModelLoaded tests if the TensorFlow model is loaded.
|
|
func (t *Net) ModelLoaded() bool {
|
|
return t.model != nil
|
|
}
|
|
|
|
func (t *Net) loadModel() error {
|
|
t.mutex.Lock()
|
|
defer t.mutex.Unlock()
|
|
|
|
if t.ModelLoaded() {
|
|
return nil
|
|
}
|
|
|
|
modelPath := path.Join(t.modelPath)
|
|
|
|
log.Infof("face: loading %s", txt.Quote(filepath.Base(modelPath)))
|
|
|
|
// Load model
|
|
model, err := tf.LoadSavedModel(modelPath, t.modelTags, nil)
|
|
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
t.model = model
|
|
|
|
return nil
|
|
}
|
|
|
|
func (t *Net) getFaceEmbedding(fileName string, f Point) [][]float32 {
|
|
x, y := f.TopLeft()
|
|
|
|
imageBuffer, err := ioutil.ReadFile(fileName)
|
|
img, err := imaging.Decode(bytes.NewReader(imageBuffer), imaging.AutoOrientation(true))
|
|
if err != nil {
|
|
log.Errorf("face: failed to decode image: %v", err)
|
|
}
|
|
|
|
img = imaging.Crop(img, image.Rect(y, x, y+f.Scale, x+f.Scale))
|
|
img = imaging.Fill(img, 160, 160, imaging.Center, imaging.Lanczos)
|
|
// err = imaging.Save(img, "testdata_out/face" + strconv.Itoa(t.count) + ".jpg")
|
|
// if err != nil {
|
|
// log.Fatalf("failed to save image: %v", err)
|
|
// }
|
|
|
|
tensor, err := imageToTensor(img, 160, 160)
|
|
|
|
if err != nil {
|
|
log.Errorf("face: failed to convert image to tensor: %v", err)
|
|
}
|
|
// TODO: prewhiten image as in facenet
|
|
|
|
trainPhaseBoolTensor, err := tf.NewTensor(false)
|
|
output, err := t.model.Session.Run(
|
|
map[tf.Output]*tf.Tensor{
|
|
t.model.Graph.Operation("input").Output(0): tensor,
|
|
t.model.Graph.Operation("phase_train").Output(0): trainPhaseBoolTensor,
|
|
},
|
|
[]tf.Output{
|
|
t.model.Graph.Operation("embeddings").Output(0),
|
|
},
|
|
nil)
|
|
|
|
if err != nil {
|
|
log.Errorf("face: faled to infer embeddings of face: %v", err)
|
|
}
|
|
|
|
if len(output) < 1 {
|
|
log.Errorf("face: inference failed, no output")
|
|
} else {
|
|
return output[0].Value().([][]float32)
|
|
// embeddings = append(embeddings, output[0].Value().([][]float32)[0])
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func imageToTensor(img image.Image, imageHeight, imageWidth int) (tfTensor *tf.Tensor, err error) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
err = fmt.Errorf("face: %s (panic)\nstack: %s", r, debug.Stack())
|
|
}
|
|
}()
|
|
|
|
if imageHeight <= 0 || imageWidth <= 0 {
|
|
return tfTensor, fmt.Errorf("face: image width and height must be > 0")
|
|
}
|
|
|
|
var tfImage [1][][][3]float32
|
|
|
|
for j := 0; j < imageHeight; j++ {
|
|
tfImage[0] = append(tfImage[0], make([][3]float32, imageWidth))
|
|
}
|
|
|
|
for i := 0; i < imageWidth; i++ {
|
|
for j := 0; j < imageHeight; j++ {
|
|
r, g, b, _ := img.At(i, j).RGBA()
|
|
tfImage[0][j][i][0] = convertValue(r)
|
|
tfImage[0][j][i][1] = convertValue(g)
|
|
tfImage[0][j][i][2] = convertValue(b)
|
|
}
|
|
}
|
|
|
|
return tf.NewTensor(tfImage)
|
|
}
|
|
|
|
func convertValue(value uint32) float32 {
|
|
return (float32(value>>8) - float32(127.5)) / float32(127.5)
|
|
}
|