photoprism/internal/classify/tensorflow_test.go
Michael Mayer e3f614bc23 Backend: Update photo title when location or labels change
Signed-off-by: Michael Mayer <michael@liquidbytes.net>
2020-04-16 20:57:00 +02:00

195 lines
4.8 KiB
Go

package classify
import (
"io/ioutil"
"testing"
tensorflow "github.com/tensorflow/tensorflow/tensorflow/go"
"github.com/stretchr/testify/assert"
)
var resourcesPath = "../../assets/resources"
var modelPath = resourcesPath + "/nasnet"
var examplesPath = resourcesPath + "/examples"
func TestTensorFlow_LabelsFromFile(t *testing.T) {
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
assert.Nil(t, err)
if err != nil {
t.Log(err.Error())
t.Fail()
}
assert.NotNil(t, result)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
t.Log(result)
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 7, result[0].Uncertainty)
})
t.Run("not existing file", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
result, err := tensorFlow.File(examplesPath + "/notexisting.jpg")
assert.Contains(t, err.Error(), "no such file or directory")
assert.Empty(t, result)
})
}
func TestTensorFlow_Labels(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode.")
}
t.Run("chameleon_lime.jpg", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
t.Log(result)
assert.NotNil(t, result)
assert.Nil(t, err)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
assert.Equal(t, "chameleon", result[0].Name)
assert.Equal(t, 100-93, result[0].Uncertainty)
}
})
t.Run("dog_orange.jpg", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
t.Log(result)
assert.NotNil(t, result)
assert.Nil(t, err)
assert.IsType(t, Labels{}, result)
assert.Equal(t, 1, len(result))
assert.Equal(t, "dog", result[0].Name)
assert.Equal(t, 34, result[0].Uncertainty)
}
})
t.Run("Random.docx", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
assert.Empty(t, result)
assert.Contains(t, err.Error(), "invalid image")
}
})
t.Run("6720px_white.jpg", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
t.Error(err)
} else {
result, err := tensorFlow.Labels(imageBuffer)
assert.Empty(t, result)
assert.Nil(t, err)
}
})
}
func TestTensorFlow_LoadModel(t *testing.T) {
t.Run("model path exists", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
result := tensorFlow.loadModel()
assert.Nil(t, result)
})
t.Run("model path does not exist", func(t *testing.T) {
tensorFlow := New(resourcesPath + "foo", false)
err := tensorFlow.loadModel()
if err == nil {
t.FailNow()
}
assert.Contains(t, err.Error(), "Could not find SavedModel")
})
}
func TestTensorFlow_BestLabels(t *testing.T) {
t.Run("labels not loaded", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
p := make([]float32, 1000)
p[666] = 0.5
result := tensorFlow.bestLabels(p)
assert.Empty(t, result)
})
t.Run("labels loaded", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
tensorFlow.loadLabels(modelPath)
p := make([]float32, 1000)
p[8] = 0.7
p[1] = 0.5
result := tensorFlow.bestLabels(p)
assert.Equal(t, "chicken", result[0].Name)
assert.Equal(t, "bird", result[0].Categories[0])
assert.Equal(t, "animal", result[1].Categories[1])
assert.Equal(t, "image", result[0].Source)
assert.Equal(t, "fish", result[1].Name)
assert.Equal(t, "image", result[1].Source)
t.Log(result)
})
}
func TestTensorFlow_MakeTensor(t *testing.T) {
t.Run("cat_brown.jpg", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
imageBuffer, err := ioutil.ReadFile(examplesPath + "/cat_brown.jpg")
assert.Nil(t, err)
result, err := tensorFlow.makeTensor(imageBuffer, "jpeg")
assert.Equal(t, tensorflow.DataType(0x1), result.DataType())
assert.Equal(t, int64(1), result.Shape()[0])
assert.Equal(t, int64(224), result.Shape()[2])
})
t.Run("Random.docx", func(t *testing.T) {
tensorFlow := New(resourcesPath, false)
imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx")
assert.Nil(t, err)
result, err := tensorFlow.makeTensor(imageBuffer, "jpeg")
assert.Empty(t, result)
assert.Equal(t, "image: unknown format", err.Error())
})
}
func Test_ConvertTF(t *testing.T) {
result := convertTF(uint32(98765432))
assert.Equal(t, float32(3024.898), result)
}