e3f614bc23
Signed-off-by: Michael Mayer <michael@liquidbytes.net>
195 lines
4.8 KiB
Go
195 lines
4.8 KiB
Go
package classify
|
|
|
|
import (
|
|
"io/ioutil"
|
|
"testing"
|
|
|
|
tensorflow "github.com/tensorflow/tensorflow/tensorflow/go"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
var resourcesPath = "../../assets/resources"
|
|
var modelPath = resourcesPath + "/nasnet"
|
|
var examplesPath = resourcesPath + "/examples"
|
|
|
|
func TestTensorFlow_LabelsFromFile(t *testing.T) {
|
|
t.Run("chameleon_lime.jpg", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
result, err := tensorFlow.File(examplesPath + "/chameleon_lime.jpg")
|
|
|
|
assert.Nil(t, err)
|
|
|
|
if err != nil {
|
|
t.Log(err.Error())
|
|
t.Fail()
|
|
}
|
|
|
|
assert.NotNil(t, result)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
t.Log(result)
|
|
|
|
assert.Equal(t, "chameleon", result[0].Name)
|
|
|
|
assert.Equal(t, 7, result[0].Uncertainty)
|
|
})
|
|
t.Run("not existing file", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
result, err := tensorFlow.File(examplesPath + "/notexisting.jpg")
|
|
assert.Contains(t, err.Error(), "no such file or directory")
|
|
assert.Empty(t, result)
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_Labels(t *testing.T) {
|
|
if testing.Short() {
|
|
t.Skip("skipping test in short mode.")
|
|
}
|
|
|
|
t.Run("chameleon_lime.jpg", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/chameleon_lime.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
t.Log(result)
|
|
|
|
assert.NotNil(t, result)
|
|
|
|
assert.Nil(t, err)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
assert.Equal(t, "chameleon", result[0].Name)
|
|
|
|
assert.Equal(t, 100-93, result[0].Uncertainty)
|
|
}
|
|
})
|
|
t.Run("dog_orange.jpg", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/dog_orange.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
|
|
t.Log(result)
|
|
|
|
assert.NotNil(t, result)
|
|
|
|
assert.Nil(t, err)
|
|
assert.IsType(t, Labels{}, result)
|
|
assert.Equal(t, 1, len(result))
|
|
|
|
assert.Equal(t, "dog", result[0].Name)
|
|
|
|
assert.Equal(t, 34, result[0].Uncertainty)
|
|
}
|
|
})
|
|
t.Run("Random.docx", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
assert.Empty(t, result)
|
|
assert.Contains(t, err.Error(), "invalid image")
|
|
}
|
|
})
|
|
t.Run("6720px_white.jpg", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
if imageBuffer, err := ioutil.ReadFile(examplesPath + "/6720px_white.jpg"); err != nil {
|
|
t.Error(err)
|
|
} else {
|
|
result, err := tensorFlow.Labels(imageBuffer)
|
|
assert.Empty(t, result)
|
|
assert.Nil(t, err)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_LoadModel(t *testing.T) {
|
|
t.Run("model path exists", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
result := tensorFlow.loadModel()
|
|
assert.Nil(t, result)
|
|
})
|
|
t.Run("model path does not exist", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath + "foo", false)
|
|
|
|
err := tensorFlow.loadModel()
|
|
|
|
if err == nil {
|
|
t.FailNow()
|
|
}
|
|
|
|
assert.Contains(t, err.Error(), "Could not find SavedModel")
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_BestLabels(t *testing.T) {
|
|
t.Run("labels not loaded", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
p := make([]float32, 1000)
|
|
|
|
p[666] = 0.5
|
|
|
|
result := tensorFlow.bestLabels(p)
|
|
assert.Empty(t, result)
|
|
})
|
|
t.Run("labels loaded", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
tensorFlow.loadLabels(modelPath)
|
|
|
|
p := make([]float32, 1000)
|
|
|
|
p[8] = 0.7
|
|
p[1] = 0.5
|
|
|
|
result := tensorFlow.bestLabels(p)
|
|
assert.Equal(t, "chicken", result[0].Name)
|
|
assert.Equal(t, "bird", result[0].Categories[0])
|
|
assert.Equal(t, "animal", result[1].Categories[1])
|
|
assert.Equal(t, "image", result[0].Source)
|
|
assert.Equal(t, "fish", result[1].Name)
|
|
assert.Equal(t, "image", result[1].Source)
|
|
t.Log(result)
|
|
})
|
|
}
|
|
|
|
func TestTensorFlow_MakeTensor(t *testing.T) {
|
|
t.Run("cat_brown.jpg", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
imageBuffer, err := ioutil.ReadFile(examplesPath + "/cat_brown.jpg")
|
|
assert.Nil(t, err)
|
|
result, err := tensorFlow.makeTensor(imageBuffer, "jpeg")
|
|
assert.Equal(t, tensorflow.DataType(0x1), result.DataType())
|
|
assert.Equal(t, int64(1), result.Shape()[0])
|
|
assert.Equal(t, int64(224), result.Shape()[2])
|
|
})
|
|
t.Run("Random.docx", func(t *testing.T) {
|
|
tensorFlow := New(resourcesPath, false)
|
|
|
|
imageBuffer, err := ioutil.ReadFile(examplesPath + "/Random.docx")
|
|
assert.Nil(t, err)
|
|
result, err := tensorFlow.makeTensor(imageBuffer, "jpeg")
|
|
assert.Empty(t, result)
|
|
assert.Equal(t, "image: unknown format", err.Error())
|
|
})
|
|
}
|
|
|
|
func Test_ConvertTF(t *testing.T) {
|
|
result := convertTF(uint32(98765432))
|
|
assert.Equal(t, float32(3024.898), result)
|
|
}
|