65 lines
No EOL
1.7 KiB
Go
65 lines
No EOL
1.7 KiB
Go
package main
|
|
|
|
import (
|
|
"bytes"
|
|
|
|
tf "github.com/tensorflow/tensorflow/tensorflow/go"
|
|
"github.com/tensorflow/tensorflow/tensorflow/go/op"
|
|
)
|
|
|
|
func makeTensorFromImage(imageBuffer *bytes.Buffer, imageFormat string) (*tf.Tensor, error) {
|
|
tensor, err := tf.NewTensor(imageBuffer.String())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
graph, input, output, err := makeTransformImageGraph(imageFormat)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
session, err := tf.NewSession(graph, nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer session.Close()
|
|
normalized, err := session.Run(
|
|
map[tf.Output]*tf.Tensor{input: tensor},
|
|
[]tf.Output{output},
|
|
nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return normalized[0], nil
|
|
}
|
|
|
|
// Creates a graph to decode, rezise and normalize an image
|
|
func makeTransformImageGraph(imageFormat string) (graph *tf.Graph, input, output tf.Output, err error) {
|
|
const (
|
|
H, W = 224, 224
|
|
Mean = float32(117)
|
|
Scale = float32(1)
|
|
)
|
|
s := op.NewScope()
|
|
input = op.Placeholder(s, tf.String)
|
|
// Decode PNG or JPEG
|
|
var decode tf.Output
|
|
if imageFormat == "png" {
|
|
decode = op.DecodePng(s, input, op.DecodePngChannels(3))
|
|
} else {
|
|
decode = op.DecodeJpeg(s, input, op.DecodeJpegChannels(3))
|
|
}
|
|
// Div and Sub perform (value-Mean)/Scale for each pixel
|
|
output = op.Div(s,
|
|
op.Sub(s,
|
|
// Resize to 224x224 with bilinear interpolation
|
|
op.ResizeBilinear(s,
|
|
// Create a batch containing a single image
|
|
op.ExpandDims(s,
|
|
// Use decoded pixel values
|
|
op.Cast(s, decode, tf.Float),
|
|
op.Const(s.SubScope("make_batch"), int32(0))),
|
|
op.Const(s.SubScope("size"), []int32{H, W})),
|
|
op.Const(s.SubScope("mean"), Mean)),
|
|
op.Const(s.SubScope("scale"), Scale))
|
|
graph, err = s.Finalize()
|
|
return graph, input, output, err
|
|
} |