326 lines
5.3 KiB
Go
326 lines
5.3 KiB
Go
package clusters
|
|
|
|
import (
|
|
"math"
|
|
"math/rand"
|
|
"sync"
|
|
"time"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
const (
|
|
changesThreshold = 2
|
|
)
|
|
|
|
type kmeansClusterer struct {
|
|
iterations, number int
|
|
|
|
// variables keeping count of changes of points' membership every iteration. User as a stopping condition.
|
|
changes, oldchanges, counter, threshold int
|
|
|
|
// For online learning only
|
|
alpha float64
|
|
dimension int
|
|
|
|
distance DistanceFunc
|
|
|
|
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
|
|
mu sync.RWMutex
|
|
a, b []int
|
|
|
|
// slices holding values of centroids of each clusters
|
|
m, n [][]float64
|
|
|
|
// dataset
|
|
d [][]float64
|
|
}
|
|
|
|
// Implementation of k-means++ algorithm with online learning
|
|
func KMeans(iterations, clusters int, distance DistanceFunc) (HardClusterer, error) {
|
|
if iterations < 1 {
|
|
return nil, errZeroIterations
|
|
}
|
|
|
|
if clusters < 2 {
|
|
return nil, errOneCluster
|
|
}
|
|
|
|
var d DistanceFunc
|
|
{
|
|
if distance != nil {
|
|
d = distance
|
|
} else {
|
|
d = EuclideanDistance
|
|
}
|
|
}
|
|
|
|
return &kmeansClusterer{
|
|
iterations: iterations,
|
|
number: clusters,
|
|
distance: d,
|
|
}, nil
|
|
}
|
|
|
|
func (c *kmeansClusterer) IsOnline() bool {
|
|
return true
|
|
}
|
|
|
|
func (c *kmeansClusterer) WithOnline(o Online) HardClusterer {
|
|
c.alpha = o.Alpha
|
|
c.dimension = o.Dimension
|
|
|
|
c.d = make([][]float64, 0, 100)
|
|
|
|
c.initializeMeans()
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *kmeansClusterer) Learn(data [][]float64) error {
|
|
if len(data) == 0 {
|
|
return errEmptySet
|
|
}
|
|
|
|
c.mu.Lock()
|
|
|
|
c.d = data
|
|
|
|
c.a = make([]int, len(data))
|
|
c.b = make([]int, c.number)
|
|
|
|
c.counter = 0
|
|
c.threshold = changesThreshold
|
|
c.changes = 0
|
|
c.oldchanges = 0
|
|
|
|
c.initializeMeansWithData()
|
|
|
|
for i := 0; i < c.iterations && c.counter != c.threshold; i++ {
|
|
c.run()
|
|
c.check()
|
|
}
|
|
|
|
c.n = nil
|
|
|
|
c.mu.Unlock()
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *kmeansClusterer) Sizes() []int {
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.b
|
|
}
|
|
|
|
func (c *kmeansClusterer) Guesses() []int {
|
|
c.mu.RLock()
|
|
defer c.mu.RUnlock()
|
|
|
|
return c.a
|
|
}
|
|
|
|
func (c *kmeansClusterer) Predict(p []float64) int {
|
|
var (
|
|
l int
|
|
d float64
|
|
m float64 = c.distance(p, c.m[0])
|
|
)
|
|
|
|
for i := 1; i < c.number; i++ {
|
|
if d = c.distance(p, c.m[i]); d < m {
|
|
m = d
|
|
l = i
|
|
}
|
|
}
|
|
|
|
return l
|
|
}
|
|
|
|
func (c *kmeansClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent {
|
|
c.mu.Lock()
|
|
|
|
var (
|
|
r chan *HCEvent = make(chan *HCEvent)
|
|
l, f int = len(c.m), len(c.m[0])
|
|
h float64 = 1 - c.alpha
|
|
)
|
|
|
|
c.b = make([]int, c.number)
|
|
|
|
/* The first step of online learning is adjusting the centroids by finding the one closes to new data point
|
|
* and modifying it's location using given alpha. Once the client quits sending new data, the actual clusters
|
|
* are computed and the mutex is unlocked. */
|
|
|
|
go func() {
|
|
for {
|
|
select {
|
|
case o := <-observations:
|
|
var (
|
|
k int
|
|
n float64
|
|
m float64 = math.Pow(c.distance(o, c.m[0]), 2)
|
|
)
|
|
|
|
for i := 1; i < l; i++ {
|
|
if n = math.Pow(c.distance(o, c.m[i]), 2); n < m {
|
|
m = n
|
|
k = i
|
|
}
|
|
}
|
|
|
|
r <- &HCEvent{
|
|
Cluster: k,
|
|
Observation: o,
|
|
}
|
|
|
|
for i := 0; i < f; i++ {
|
|
c.m[k][i] = c.alpha*o[i] + h*c.m[k][i]
|
|
}
|
|
|
|
c.d = append(c.d, o)
|
|
case <-done:
|
|
go func() {
|
|
var (
|
|
n int
|
|
d, m float64
|
|
)
|
|
|
|
c.a = make([]int, len(c.d))
|
|
|
|
for i := 0; i < len(c.d); i++ {
|
|
m = c.distance(c.d[i], c.m[0])
|
|
n = 0
|
|
|
|
for j := 1; j < c.number; j++ {
|
|
if d = c.distance(c.d[i], c.m[j]); d < m {
|
|
m = d
|
|
n = j
|
|
}
|
|
}
|
|
|
|
c.a[i] = n + 1
|
|
c.b[n]++
|
|
}
|
|
|
|
c.mu.Unlock()
|
|
}()
|
|
|
|
return
|
|
}
|
|
}
|
|
}()
|
|
|
|
return r
|
|
}
|
|
|
|
// private
|
|
func (c *kmeansClusterer) initializeMeansWithData() {
|
|
c.m = make([][]float64, c.number)
|
|
c.n = make([][]float64, c.number)
|
|
|
|
rand.Seed(time.Now().UTC().Unix())
|
|
|
|
var (
|
|
k int
|
|
s, t, l, f float64
|
|
d []float64 = make([]float64, len(c.d))
|
|
)
|
|
|
|
c.m[0] = c.d[rand.Intn(len(c.d)-1)]
|
|
|
|
for i := 1; i < c.number; i++ {
|
|
s = 0
|
|
t = 0
|
|
for j := 0; j < len(c.d); j++ {
|
|
|
|
l = c.distance(c.m[0], c.d[j])
|
|
for g := 1; g < i; g++ {
|
|
if f = c.distance(c.m[g], c.d[j]); f < l {
|
|
l = f
|
|
}
|
|
}
|
|
|
|
d[j] = math.Pow(l, 2)
|
|
s += d[j]
|
|
}
|
|
|
|
t = rand.Float64() * s
|
|
k = 0
|
|
for s = d[0]; s < t; s += d[k] {
|
|
k++
|
|
}
|
|
|
|
c.m[i] = c.d[k]
|
|
}
|
|
|
|
for i := 0; i < c.number; i++ {
|
|
c.n[i] = make([]float64, len(c.m[0]))
|
|
}
|
|
}
|
|
|
|
func (c *kmeansClusterer) initializeMeans() {
|
|
c.m = make([][]float64, c.number)
|
|
|
|
rand.Seed(time.Now().UTC().Unix())
|
|
|
|
for i := 0; i < c.number; i++ {
|
|
c.m[i] = make([]float64, c.dimension)
|
|
for j := 0; j < c.dimension; j++ {
|
|
c.m[i][j] = 10 * (rand.Float64() - 0.5)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *kmeansClusterer) run() {
|
|
var (
|
|
l, k, n int = len(c.m[0]), 0, 0
|
|
m, d float64
|
|
)
|
|
|
|
for i := 0; i < c.number; i++ {
|
|
c.b[i] = 0
|
|
}
|
|
|
|
for i := 0; i < len(c.d); i++ {
|
|
m = c.distance(c.d[i], c.m[0])
|
|
n = 0
|
|
|
|
for j := 1; j < c.number; j++ {
|
|
if d = c.distance(c.d[i], c.m[j]); d < m {
|
|
m = d
|
|
n = j
|
|
}
|
|
}
|
|
|
|
k = n + 1
|
|
|
|
if c.a[i] != k {
|
|
c.changes++
|
|
}
|
|
|
|
c.a[i] = k
|
|
c.b[n]++
|
|
|
|
floats.Add(c.n[n], c.d[i])
|
|
}
|
|
|
|
for i := 0; i < c.number; i++ {
|
|
floats.Scale(1/float64(c.b[i]), c.n[i])
|
|
|
|
for j := 0; j < l; j++ {
|
|
c.m[i][j] = c.n[i][j]
|
|
c.n[i][j] = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *kmeansClusterer) check() {
|
|
if c.changes == c.oldchanges {
|
|
c.counter++
|
|
}
|
|
|
|
c.oldchanges = c.changes
|
|
}
|