package face import ( _ "embed" "fmt" _ "image/jpeg" "io" "os" "path/filepath" "runtime/debug" "sort" pigo "github.com/esimov/pigo/core" "github.com/photoprism/photoprism/pkg/fs" "github.com/photoprism/photoprism/pkg/txt" ) //go:embed cascade/facefinder var cascadeFile []byte //go:embed cascade/puploc var puplocFile []byte var ( classifier *pigo.Pigo plc *pigo.PuplocCascade flpcs map[string][]*FlpCascade ) func init() { var err error p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err = p.Unpack(cascadeFile) if err != nil { log.Errorf("faces: %s", err) } pl := pigo.NewPuplocCascade() plc, err = pl.UnpackCascade(puplocFile) if err != nil { log.Errorf("faces: %s", err) } flpcs, err = ReadCascadeDir(pl, "cascade/lps") if err != nil { log.Errorf("faces: %s", err) } } var ( eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"} mouthCascades = []string{"lp93", "lp84", "lp82", "lp81"} ) // Detector struct contains Pigo face detector general settings. type Detector struct { minSize int angle float64 shiftFactor float64 scaleFactor float64 iouThreshold float64 scoreThreshold float32 perturb int } // Detect runs the detection algorithm over the provided source image. func Detect(fileName string, findLandmarks bool, minSize int) (faces Faces, err error) { defer func() { if r := recover(); r != nil { log.Errorf("faces: %s (panic)\nstack: %s", r, debug.Stack()) } }() if minSize < 20 { minSize = 20 } d := &Detector{ minSize: minSize, angle: 0.0, shiftFactor: 0.1, scaleFactor: 1.1, iouThreshold: 0.2, scoreThreshold: 9.0, perturb: 63, } if !fs.FileExists(fileName) { return faces, fmt.Errorf("faces: file '%s' not found", txt.Quote(filepath.Base(fileName))) } det, params, err := d.Detect(fileName) if err != nil { return faces, fmt.Errorf("faces: %v (detect faces)", err) } if det == nil { return faces, fmt.Errorf("faces: no result") } faces, err = d.Faces(det, params, findLandmarks) if err != nil { return faces, fmt.Errorf("faces: %s", err) } return faces, nil } // Detect runs the detection algorithm over the provided source image. func (d *Detector) Detect(fileName string) (faces []pigo.Detection, params pigo.CascadeParams, err error) { var srcFile io.Reader file, err := os.Open(fileName) if err != nil { return faces, params, err } defer file.Close() srcFile = file src, err := pigo.DecodeImage(srcFile) if err != nil { return faces, params, err } pixels := pigo.RgbToGrayscale(src) cols, rows := src.Bounds().Max.X, src.Bounds().Max.Y var maxSize int if cols < 20 || rows < 20 || cols < d.minSize || rows < d.minSize { return faces, params, fmt.Errorf("image size %dx%d is too small", cols, rows) } else if cols < rows { maxSize = cols - 8 } else { maxSize = rows - 8 } imageParams := &pigo.ImageParams{ Pixels: pixels, Rows: rows, Cols: cols, Dim: cols, } if rows > 800 || cols > 800 { d.scoreThreshold += 9.0 } params = pigo.CascadeParams{ MinSize: d.minSize, MaxSize: maxSize, ShiftFactor: d.shiftFactor, ScaleFactor: d.scaleFactor, ImageParams: *imageParams, } log.Debugf("faces: image size %dx%d, face size min %d, max %d", cols, rows, params.MinSize, params.MaxSize) // Run the classifier over the obtained leaf nodes and return the Face results. // The result contains quadruplets representing the row, column, scale and Face score. faces = classifier.RunCascade(params, d.angle) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, d.iouThreshold) return faces, params, nil } // Faces adds landmark coordinates to detected faces and returns the results. func (d *Detector) Faces(det []pigo.Detection, params pigo.CascadeParams, findLandmarks bool) (results Faces, err error) { var maxQ float32 // Sort by quality. sort.Slice(det, func(i, j int) bool { return det[i].Q > det[j].Q }) for _, face := range det { var eyesCoords []Area var landmarkCoords []Area var puploc *pigo.Puploc if face.Q < d.scoreThreshold { continue } if maxQ < face.Q { maxQ = face.Q } else if maxQ >= 20 && face.Q < 15 { continue } faceCoord := NewArea( "face", face.Row, face.Col, face.Scale, ) if face.Scale > 50 && findLandmarks { // Find left eye. puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: d.perturb, } leftEye := plc.RunDetector(*puploc, params.ImageParams, d.angle, false) if leftEye.Row > 0 && leftEye.Col > 0 { eyesCoords = append(eyesCoords, NewArea( "eye_l", leftEye.Row, leftEye.Col, int(leftEye.Scale), )) } // Find right eye. puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: d.perturb, } rightEye := plc.RunDetector(*puploc, params.ImageParams, d.angle, false) if rightEye.Row > 0 && rightEye.Col > 0 { eyesCoords = append(eyesCoords, NewArea( "eye_r", rightEye.Row, rightEye.Col, int(rightEye.Scale), )) } if leftEye != nil && rightEye != nil { for _, eye := range eyeCascades { for _, flpc := range flpcs[eye] { if flpc == nil { continue } flp := flpc.GetLandmarkPoint(leftEye, rightEye, params.ImageParams, d.perturb, false) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, NewArea( eye, flp.Row, flp.Col, int(flp.Scale), )) } flp = flpc.GetLandmarkPoint(leftEye, rightEye, params.ImageParams, d.perturb, true) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, NewArea( eye+"_v", flp.Row, flp.Col, int(flp.Scale), )) } } } } // Find mouth. for _, mouth := range mouthCascades { for _, flpc := range flpcs[mouth] { if flpc == nil { continue } flp := flpc.GetLandmarkPoint(leftEye, rightEye, params.ImageParams, d.perturb, false) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, NewArea( "mouth_"+mouth, flp.Row, flp.Col, int(flp.Scale), )) } } } flpc := flpcs["lp84"][0] if flpc != nil { flp := flpc.GetLandmarkPoint(leftEye, rightEye, params.ImageParams, d.perturb, true) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, NewArea( "lp84", flp.Row, flp.Col, int(flp.Scale), )) } } } results = append(results, Face{ Rows: params.ImageParams.Rows, Cols: params.ImageParams.Cols, Score: int(face.Q), Area: faceCoord, Eyes: eyesCoords, Landmarks: landmarkCoords, }) } return results, nil }