package photoprism import ( "io/ioutil" "testing" "github.com/photoprism/photoprism/internal/config" "github.com/stretchr/testify/assert" ) func TestTensorFlow_LoadLabelRules(t *testing.T) { t.Run("labels.yml exists", func(t *testing.T) { conf := config.NewTestConfig() tensorFlow := NewTensorFlow(conf) result := tensorFlow.loadLabelRules() assert.Nil(t, result) }) t.Run("labels.yml not existing in config path", func(t *testing.T) { conf := config.NewTestErrorConfig() tensorFlow := NewTensorFlow(conf) result := tensorFlow.loadLabelRules() assert.Contains(t, result.Error(), "label rules file not found") }) } func TestTensorFlow_LabelsFromFile(t *testing.T) { t.Run("/chameleon_lime.jpg", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) result, err := tensorFlow.LabelsFromFile(conf.ExamplesPath() + "/chameleon_lime.jpg") assert.Nil(t, err) if err != nil { t.Log(err.Error()) t.Fail() } assert.NotNil(t, result) assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) t.Log(result) assert.Equal(t, "chameleon", result[0].Name) assert.Equal(t, 7, result[0].Uncertainty) }) t.Run("not existing file", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) result, err := tensorFlow.LabelsFromFile(conf.ExamplesPath() + "/notexisting.jpg") assert.Contains(t, err.Error(), "no such file or directory") assert.Empty(t, result) }) } func TestTensorFlow_Labels(t *testing.T) { if testing.Short() { t.Skip("skipping test in short mode.") } t.Run("/chameleon_lime.jpg", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) if imageBuffer, err := ioutil.ReadFile(conf.ExamplesPath() + "/chameleon_lime.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Labels(imageBuffer) t.Log(result) assert.NotNil(t, result) assert.Nil(t, err) assert.IsType(t, Labels{}, result) assert.Equal(t, 1, len(result)) assert.Equal(t, "chameleon", result[0].Name) assert.Equal(t, 100-93, result[0].Uncertainty) } }) t.Run("/dog_orange.jpg", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) if imageBuffer, err := ioutil.ReadFile(conf.ExamplesPath() + "/dog_orange.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Labels(imageBuffer) t.Log(result) assert.NotNil(t, result) assert.Nil(t, err) assert.IsType(t, Labels{}, result) assert.Equal(t, 2, len(result)) assert.Equal(t, "chihuahua dog", result[0].Name) assert.Equal(t, "pembroke dog", result[1].Name) assert.Equal(t, 34, result[0].Uncertainty) assert.Equal(t, 91, result[1].Uncertainty) } }) t.Run("/Random.docx", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) if imageBuffer, err := ioutil.ReadFile(conf.ExamplesPath() + "/Random.docx"); err != nil { t.Error(err) } else { result, err := tensorFlow.Labels(imageBuffer) assert.Empty(t, result) assert.Contains(t, err.Error(), "invalid image") } }) t.Run("/6720px_white.jpg", func(t *testing.T) { conf := config.TestConfig() tensorFlow := NewTensorFlow(conf) if imageBuffer, err := ioutil.ReadFile(conf.ExamplesPath() + "/6720px_white.jpg"); err != nil { t.Error(err) } else { result, err := tensorFlow.Labels(imageBuffer) assert.Empty(t, result) assert.Nil(t, err) } }) } func TestTensorFlow_LoadModel(t *testing.T) { t.Run("model path exists", func(t *testing.T) { conf := config.NewTestConfig() tensorFlow := NewTensorFlow(conf) result := tensorFlow.loadModel() assert.Nil(t, result) }) t.Run("model path does not exist", func(t *testing.T) { conf := config.NewTestErrorConfig() tensorFlow := NewTensorFlow(conf) result := tensorFlow.loadModel() assert.Contains(t, result.Error(), "Could not find SavedModel") }) }