/* Package face provides face landmark detection. Copyright (c) 2018 - 2021 Michael Mayer This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . PhotoPrism® is a registered trademark of Michael Mayer. You may use it as required to describe our software, run your own server, for educational purposes, but not for offering commercial goods, products, or services without prior written permission. In other words, please ask. Feel free to send an e-mail to hello@photoprism.org if you have questions, want to support our work, or just want to say hello. Additional information can be found in our Developer Guide: https://docs.photoprism.org/developer-guide/ */ package face import ( "embed" "fmt" "io" "os" "time" "github.com/photoprism/photoprism/internal/event" "github.com/photoprism/photoprism/pkg/fs" "github.com/photoprism/photoprism/pkg/txt" pigo "github.com/esimov/pigo/core" ) //go:embed cascade/lps/* var efs embed.FS var log = event.Log //go:embed cascade/facefinder var cascadeFile []byte //go:embed cascade/puploc var puplocFile []byte var ( classifier *pigo.Pigo plc *pigo.PuplocCascade flpcs map[string][]*FlpCascade imgParams *pigo.ImageParams ) func init() { var err error p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err = p.Unpack(cascadeFile) if err != nil { log.Errorf("face: %s", err) } pl := pigo.NewPuplocCascade() plc, err = pl.UnpackCascade(puplocFile) if err != nil { log.Errorf("face: %s", err) } flpcs, err = ReadCascadeDir(pl, "cascade/lps") if err != nil { log.Errorf("face: %s", err) } } var ( eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"} mouthCascades = []string{"lp93", "lp84", "lp82", "lp81"} ) // Detector struct contains Pigo face detector general settings. type Detector struct { minSize int maxSize int angle float64 shiftFactor float64 scaleFactor float64 iouThreshold float64 } func DefaultDetector() *Detector { return &Detector{ minSize: 20, maxSize: 1000, angle: 0.0, shiftFactor: 0.1, scaleFactor: 1.1, iouThreshold: 0.2, } } // coord holds the Result coordinates type coord struct { Row int `json:"x,omitempty"` Col int `json:"y,omitempty"` Scale int `json:"size,omitempty"` } // Result holds the Result points of the various Result types type Result struct { FacePoints coord `json:"face,omitempty"` EyePoints []coord `json:"eyes,omitempty"` LandmarkPoints []coord `json:"landmark_points,omitempty"` } // Detect runs the detection algorithm over the provided source image. func Detect(fileName string, fd *Detector) (det []Result, err error) { if !fs.FileExists(fileName) { return det, fmt.Errorf("face: file '%s' not found", fileName) } start := time.Now() log.Debugf("\nface: detecting faces in %s", txt.Quote(fileName)) faces, err := fd.Detect(fileName) if err != nil { return det, fmt.Errorf("face: %v (detect faces)", err) } det, err = fd.Results(faces) if err != nil { return det, fmt.Errorf("face: %s (Results)", err) } log.Debugf("\nface: %s done in \x1b[92m%.2fs\n", txt.Quote(fileName), time.Since(start).Seconds()) return det, nil } // Detect runs the detection algorithm over the provided source image. func (fd *Detector) Detect(fileName string) ([]pigo.Detection, error) { var srcFile io.Reader file, err := os.Open(fileName) if err != nil { return nil, err } defer file.Close() srcFile = file src, err := pigo.DecodeImage(srcFile) if err != nil { return nil, err } pixels := pigo.RgbToGrayscale(src) cols, rows := src.Bounds().Max.X, src.Bounds().Max.Y imgParams = &pigo.ImageParams{ Pixels: pixels, Rows: rows, Cols: cols, Dim: cols, } cParams := pigo.CascadeParams{ MinSize: fd.minSize, MaxSize: fd.maxSize, ShiftFactor: fd.shiftFactor, ScaleFactor: fd.scaleFactor, ImageParams: *imgParams, } // Run the classifier over the obtained leaf nodes and return the Result results. // The result contains quadruplets representing the row, column, scale and Result score. faces := classifier.RunCascade(cParams, fd.angle) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, fd.iouThreshold) return faces, nil } // Results adds landmark coordinates to detected faces and returns the results. func (fd *Detector) Results(faces []pigo.Detection) ([]Result, error) { var ( qThresh float32 = 5.0 perturb = 63 ) var ( detections []Result eyesCoords []coord landmarkCoords []coord puploc *pigo.Puploc ) for _, face := range faces { if face.Q > qThresh { faceCoord := &coord{ Col: face.Row - face.Scale/2, Row: face.Col - face.Scale/2, Scale: face.Scale, } if face.Scale > 50 { // left eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: perturb, } leftEye := plc.RunDetector(*puploc, *imgParams, fd.angle, false) if leftEye.Row > 0 && leftEye.Col > 0 { eyesCoords = append(eyesCoords, coord{ Col: leftEye.Row, Row: leftEye.Col, Scale: int(leftEye.Scale), }) } // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: perturb, } rightEye := plc.RunDetector(*puploc, *imgParams, fd.angle, false) if rightEye.Row > 0 && rightEye.Col > 0 { eyesCoords = append(eyesCoords, coord{ Col: rightEye.Row, Row: rightEye.Col, Scale: int(rightEye.Scale), }) } for _, eye := range eyeCascades { for _, flpc := range flpcs[eye] { flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, coord{ Col: flp.Row, Row: flp.Col, Scale: int(flp.Scale), }) } flp = flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, coord{ Col: flp.Row, Row: flp.Col, Scale: int(flp.Scale), }) } } } for _, mouth := range mouthCascades { for _, flpc := range flpcs[mouth] { flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, coord{ Col: flp.Row, Row: flp.Col, Scale: int(flp.Scale), }) } } } flp := flpcs["lp84"][0].GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true) if flp.Row > 0 && flp.Col > 0 { landmarkCoords = append(landmarkCoords, coord{ Col: flp.Row, Row: flp.Col, Scale: int(flp.Scale), }) } } detections = append(detections, Result{ FacePoints: *faceCoord, EyePoints: eyesCoords, LandmarkPoints: landmarkCoords, }) } } return detections, nil }