package clusters import ( "math" "math/rand" "sync" "time" "gonum.org/v1/gonum/floats" ) const ( changesThreshold = 2 ) type kmeansClusterer struct { iterations, number int // variables keeping count of changes of points' membership every iteration. User as a stopping condition. changes, oldchanges, counter, threshold int // For online learning only alpha float64 dimension int distance DistFunc // slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation. mu sync.RWMutex a, b []int // slices holding values of centroids of each clusters m, n [][]float64 // dataset d [][]float64 } // Implementation of k-means++ algorithm with online learning func KMeans(iterations, clusters int, distance DistFunc) (HardClusterer, error) { if iterations < 1 { return nil, errZeroIterations } if clusters < 2 { return nil, errOneCluster } var d DistFunc { if distance != nil { d = distance } else { d = EuclideanDist } } return &kmeansClusterer{ iterations: iterations, number: clusters, distance: d, }, nil } func (c *kmeansClusterer) IsOnline() bool { return true } func (c *kmeansClusterer) WithOnline(o Online) HardClusterer { c.alpha = o.Alpha c.dimension = o.Dimension c.d = make([][]float64, 0, 100) c.initializeMeans() return c } func (c *kmeansClusterer) Learn(data [][]float64) error { if len(data) == 0 { return errEmptySet } c.mu.Lock() c.d = data c.a = make([]int, len(data)) c.b = make([]int, c.number) c.counter = 0 c.threshold = changesThreshold c.changes = 0 c.oldchanges = 0 c.initializeMeansWithData() for i := 0; i < c.iterations && c.counter != c.threshold; i++ { c.run() c.check() } c.n = nil c.mu.Unlock() return nil } func (c *kmeansClusterer) Sizes() []int { c.mu.RLock() defer c.mu.RUnlock() return c.b } func (c *kmeansClusterer) Guesses() []int { c.mu.RLock() defer c.mu.RUnlock() return c.a } func (c *kmeansClusterer) Predict(p []float64) int { var ( l int d float64 m float64 = c.distance(p, c.m[0]) ) for i := 1; i < c.number; i++ { if d = c.distance(p, c.m[i]); d < m { m = d l = i } } return l } func (c *kmeansClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent { c.mu.Lock() var ( r chan *HCEvent = make(chan *HCEvent) l, f int = len(c.m), len(c.m[0]) h float64 = 1 - c.alpha ) c.b = make([]int, c.number) /* The first step of online learning is adjusting the centroids by finding the one closes to new data point * and modifying it's location using given alpha. Once the client quits sending new data, the actual clusters * are computed and the mutex is unlocked. */ go func() { for { select { case o := <-observations: var ( k int n float64 m float64 = math.Pow(c.distance(o, c.m[0]), 2) ) for i := 1; i < l; i++ { if n = math.Pow(c.distance(o, c.m[i]), 2); n < m { m = n k = i } } r <- &HCEvent{ Cluster: k, Observation: o, } for i := 0; i < f; i++ { c.m[k][i] = c.alpha*o[i] + h*c.m[k][i] } c.d = append(c.d, o) case <-done: go func() { var ( n int d, m float64 ) c.a = make([]int, len(c.d)) for i := 0; i < len(c.d); i++ { m = c.distance(c.d[i], c.m[0]) n = 0 for j := 1; j < c.number; j++ { if d = c.distance(c.d[i], c.m[j]); d < m { m = d n = j } } c.a[i] = n + 1 c.b[n]++ } c.mu.Unlock() }() return } } }() return r } // private func (c *kmeansClusterer) initializeMeansWithData() { c.m = make([][]float64, c.number) c.n = make([][]float64, c.number) rand.Seed(time.Now().UTC().Unix()) var ( k int s, t, l, f float64 d []float64 = make([]float64, len(c.d)) ) c.m[0] = c.d[rand.Intn(len(c.d)-1)] for i := 1; i < c.number; i++ { s = 0 t = 0 for j := 0; j < len(c.d); j++ { l = c.distance(c.m[0], c.d[j]) for g := 1; g < i; g++ { if f = c.distance(c.m[g], c.d[j]); f < l { l = f } } d[j] = math.Pow(l, 2) s += d[j] } t = rand.Float64() * s k = 0 for s = d[0]; s < t; s += d[k] { k++ } c.m[i] = c.d[k] } for i := 0; i < c.number; i++ { c.n[i] = make([]float64, len(c.m[0])) } } func (c *kmeansClusterer) initializeMeans() { c.m = make([][]float64, c.number) rand.Seed(time.Now().UTC().Unix()) for i := 0; i < c.number; i++ { c.m[i] = make([]float64, c.dimension) for j := 0; j < c.dimension; j++ { c.m[i][j] = 10 * (rand.Float64() - 0.5) } } } func (c *kmeansClusterer) run() { var ( l, k, n int = len(c.m[0]), 0, 0 m, d float64 ) for i := 0; i < c.number; i++ { c.b[i] = 0 } for i := 0; i < len(c.d); i++ { m = c.distance(c.d[i], c.m[0]) n = 0 for j := 1; j < c.number; j++ { if d = c.distance(c.d[i], c.m[j]); d < m { m = d n = j } } k = n + 1 if c.a[i] != k { c.changes++ } c.a[i] = k c.b[n]++ floats.Add(c.n[n], c.d[i]) } for i := 0; i < c.number; i++ { floats.Scale(1/float64(c.b[i]), c.n[i]) for j := 0; j < l; j++ { c.m[i][j] = c.n[i][j] c.n[i][j] = 0 } } } func (c *kmeansClusterer) check() { if c.changes == c.oldchanges { c.counter++ } c.oldchanges = c.changes }