package face import ( "os" "path/filepath" "testing" "github.com/photoprism/photoprism/pkg/fastwalk" "github.com/stretchr/testify/assert" ) var modelPath, _ = filepath.Abs("../../assets/facenet") func TestNet(t *testing.T) { expected := map[string]int{ "1.jpg": 1, "2.jpg": 1, "3.jpg": 1, "4.jpg": 1, "5.jpg": 1, "6.jpg": 1, "7.jpg": 0, "8.jpg": 0, "9.jpg": 0, "10.jpg": 0, "11.jpg": 0, "12.jpg": 1, "13.jpg": 0, "14.jpg": 0, "15.jpg": 0, "16.jpg": 1, "17.jpg": 1, "18.jpg": 2, "19.jpg": 0, } faceindices := map[string][]int{ "18.jpg": {1, 0}, "1.jpg": {2}, "4.jpg": {3}, "5.jpg": {4}, "6.jpg": {5}, "2.jpg": {6}, "12.jpg": {7}, "16.jpg": {8}, "17.jpg": {9}, "3.jpg": {10}, } faceindexToPersonid := [11]int{ 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 0, } var embeddings [11][]float32 faceNet := NewNet(modelPath, "testdata/cache", false) if err := fastwalk.Walk("testdata", func(fileName string, info os.FileMode) error { if info.IsDir() || filepath.Base(filepath.Dir(fileName)) != "testdata" { return nil } t.Run(fileName, func(t *testing.T) { baseName := filepath.Base(fileName) faces, err := faceNet.Detect(fileName, 20, false, -1) if err != nil { t.Fatal(err) } // for i, f := range faces { // t.Logf("FACE %d IN %s: %#v", i, fileName, f.Area) // } if len(faces) > 0 { for i, f := range faces { if len(f.Embeddings) > 0 { embeddings[faceindices[baseName][i]] = f.Embeddings[0] } else { embeddings[faceindices[baseName][i]] = nil } } } if i, ok := expected[baseName]; ok { assert.Equal(t, i, faces.Count()) if faces.Count() == 0 { assert.Equal(t, 100, faces.Uncertainty()) } else { assert.Truef(t, faces.Uncertainty() >= 0 && faces.Uncertainty() <= 50, "uncertainty should be between 0 and 50") } t.Logf("uncertainty: %d", faces.Uncertainty()) } else { t.Logf("unknown test result for %s", baseName) } }) return nil }); err != nil { t.Fatal(err) } // Distance Matrix correct := 0 for i := 0; i < len(embeddings); i++ { for j := 0; j < len(embeddings); j++ { if i >= j { continue } dist := EuclidianDistance(embeddings[i], embeddings[j]) t.Logf("Dist for %d %d (faces are %d %d) is %f", i, j, faceindexToPersonid[i], faceindexToPersonid[j], dist) if faceindexToPersonid[i] == faceindexToPersonid[j] { if dist < 1.21 { correct += 1 } } else { if dist >= 1.21 { correct += 1 } } } } t.Logf("Correct for %d", correct) // there are a few incorrect results // 4 out of 55 with the 1.21 threshold assert.Equal(t, 51, correct) }