package classify import ( "bufio" "bytes" "fmt" "image" "io/ioutil" "math" "os" "path" "path/filepath" "runtime/debug" "sort" "strings" "github.com/disintegration/imaging" "github.com/photoprism/photoprism/pkg/txt" tf "github.com/tensorflow/tensorflow/tensorflow/go" ) // TensorFlow is a wrapper for tensorflow low-level API. type TensorFlow struct { model *tf.SavedModel modelsPath string disabled bool modelName string modelTags []string labels []string } // New returns new TensorFlow instance with Nasnet model. func New(modelsPath string, disabled bool) *TensorFlow { return &TensorFlow{modelsPath: modelsPath, disabled: disabled, modelName: "nasnet", modelTags: []string{"photoprism"}} } // Init initialises tensorflow models if not disabled func (t *TensorFlow) Init() (err error) { if t.disabled { return nil } return t.loadModel() } // File returns matching labels for a jpeg media file. func (t *TensorFlow) File(filename string) (result Labels, err error) { if t.disabled { return result, nil } imageBuffer, err := ioutil.ReadFile(filename) if err != nil { return nil, err } return t.Labels(imageBuffer) } // Labels returns matching labels for a jpeg media string. func (t *TensorFlow) Labels(img []byte) (result Labels, err error) { defer func() { if r := recover(); r != nil { err = fmt.Errorf("classify: %s (inference panic)\nstack: %s", r, debug.Stack()) } }() if t.disabled { return result, nil } if err := t.loadModel(); err != nil { return nil, err } // Create tensor from image. tensor, err := t.createTensor(img, "jpeg") if err != nil { return nil, err } // Run inference. output, err := t.model.Session.Run( map[tf.Output]*tf.Tensor{ t.model.Graph.Operation("input_1").Output(0): tensor, }, []tf.Output{ t.model.Graph.Operation("predictions/Softmax").Output(0), }, nil) if err != nil { return result, fmt.Errorf("classify: %s (run inference)", err.Error()) } if len(output) < 1 { return result, fmt.Errorf("classify: inference failed, no output") } // Return best labels result = t.bestLabels(output[0].Value().([][]float32)[0]) if len(result) > 0 { log.Tracef("classify: image classified as %+v", result) } return result, nil } func (t *TensorFlow) loadLabels(path string) error { modelLabels := path + "/labels.txt" log.Infof("classify: loading labels from labels.txt") // Load labels f, err := os.Open(modelLabels) if err != nil { return err } defer f.Close() scanner := bufio.NewScanner(f) // Labels are separated by newlines for scanner.Scan() { t.labels = append(t.labels, scanner.Text()) } if err := scanner.Err(); err != nil { return err } return nil } // ModelLoaded tests if the TensorFlow model is loaded. func (t *TensorFlow) ModelLoaded() bool { return t.model != nil } func (t *TensorFlow) loadModel() error { if t.ModelLoaded() { return nil } modelPath := path.Join(t.modelsPath, t.modelName) log.Infof("classify: loading %s", txt.Quote(filepath.Base(modelPath))) // Load model model, err := tf.LoadSavedModel(modelPath, t.modelTags, nil) if err != nil { return err } t.model = model return t.loadLabels(modelPath) } // bestLabels returns the best 5 labels (if enough high probability labels) from the prediction of the model func (t *TensorFlow) bestLabels(probabilities []float32) Labels { var result Labels for i, p := range probabilities { if i >= len(t.labels) { // break if probabilities and labels does not match break } // discard labels with low probabilities if p < 0.1 { continue } labelText := strings.ToLower(t.labels[i]) rule, _ := Rules.Find(labelText) // discard labels that don't met the threshold if p < rule.Threshold { continue } // Get rule label name instead of t.labels name if it exists if rule.Label != "" { labelText = rule.Label } labelText = strings.TrimSpace(labelText) uncertainty := 100 - int(math.Round(float64(p*100))) result = append(result, Label{Name: labelText, Source: SrcImage, Uncertainty: uncertainty, Priority: rule.Priority, Categories: rule.Categories}) } // Sort by probability sort.Sort(result) // Return the best labels only. if l := len(result); l < 5 { return result[:l] } else { return result[:5] } } // createTensor converts bytes jpeg image in a tensor object required as tensorflow model input func (t *TensorFlow) createTensor(image []byte, imageFormat string) (*tf.Tensor, error) { img, err := imaging.Decode(bytes.NewReader(image), imaging.AutoOrientation(true)) if err != nil { return nil, err } width, height := 224, 224 img = imaging.Fill(img, width, height, imaging.Center, imaging.Lanczos) return imageToTensor(img, width, height) } func imageToTensor(img image.Image, imageHeight, imageWidth int) (tfTensor *tf.Tensor, err error) { defer func() { if r := recover(); r != nil { err = fmt.Errorf("classify: %s (panic)\nstack: %s", r, debug.Stack()) } }() if imageHeight <= 0 || imageWidth <= 0 { return tfTensor, fmt.Errorf("classify: image width and height must be > 0") } var tfImage [1][][][3]float32 for j := 0; j < imageHeight; j++ { tfImage[0] = append(tfImage[0], make([][3]float32, imageWidth)) } for i := 0; i < imageWidth; i++ { for j := 0; j < imageHeight; j++ { r, g, b, _ := img.At(i, j).RGBA() tfImage[0][j][i][0] = convertValue(r) tfImage[0][j][i][1] = convertValue(g) tfImage[0][j][i][2] = convertValue(b) } } return tf.NewTensor(tfImage) } func convertValue(value uint32) float32 { return (float32(value>>8) - float32(127.5)) / float32(127.5) }