People: Add unofficial env variables to tweak face matching #1587 #2182

Adds two unofficial env variables so advanced users can experiment:

1. PHOTOPRISM_FACE_KIDS_DIST=0.6950 (range: 0.1-1.5, -1 to disable)
2. PHOTOPRISM_FACE_IGNORE_DIST=0.86 (range: 0.1-1.5, -1 to disable)
This commit is contained in:
Michael Mayer 2022-04-03 17:25:37 +02:00
parent bb09c43c49
commit 41b252d820
26 changed files with 395 additions and 310 deletions

View file

@ -54,9 +54,9 @@ func NewFace(subjUID, faceSrc string, embeddings face.Embeddings) *Face {
return result return result
} }
// Unsuitable tests if the face is unsuitable for clustering and matching. // OmitMatch checks whether the face should be skipped when matching.
func (m *Face) Unsuitable() bool { func (m *Face) OmitMatch() bool {
return m.Embedding().Unsuitable() return m.Embedding().OmitMatch()
} }
// SetEmbeddings assigns face embeddings. // SetEmbeddings assigns face embeddings.
@ -125,7 +125,7 @@ func (m *Face) Match(embeddings face.Embeddings) (match bool, dist float64) {
// Calculate the smallest distance to embeddings. // Calculate the smallest distance to embeddings.
for _, e := range embeddings { for _, e := range embeddings {
if d := e.Distance(faceEmbedding); d < dist || dist < 0 { if d := e.Dist(faceEmbedding); d < dist || dist < 0 {
dist = d dist = d
} }
} }

File diff suppressed because one or more lines are too long

View file

@ -8,7 +8,6 @@ import (
"time" "time"
"github.com/dustin/go-humanize/english" "github.com/dustin/go-humanize/english"
"github.com/jinzhu/gorm" "github.com/jinzhu/gorm"
"github.com/photoprism/photoprism/internal/crop" "github.com/photoprism/photoprism/internal/crop"
@ -273,7 +272,7 @@ func (m *Marker) SetFace(f *Face, dist float64) (updated bool, err error) {
continue continue
} }
if d := e.Distance(faceEmbedding); d < m.FaceDist || m.FaceDist < 0 { if d := e.Dist(faceEmbedding); d < m.FaceDist || m.FaceDist < 0 {
m.FaceDist = d m.FaceDist = d
} }
} }
@ -507,7 +506,7 @@ func (m *Marker) Face() (f *Face) {
} else if f = NewFace(m.SubjUID, m.SubjSrc, emb); f == nil { } else if f = NewFace(m.SubjUID, m.SubjSrc, emb); f == nil {
log.Warnf("marker %s: failed assigning face", sanitize.Log(m.MarkerUID)) log.Warnf("marker %s: failed assigning face", sanitize.Log(m.MarkerUID))
return nil return nil
} else if f.Unsuitable() { } else if f.OmitMatch() {
log.Infof("marker %s: face %s is unsuitable for clustering and matching", sanitize.Log(m.MarkerUID), f.ID) log.Infof("marker %s: face %s is unsuitable for clustering and matching", sanitize.Log(m.MarkerUID), f.ID)
} else if f = FirstOrCreateFace(f); f == nil { } else if f = FirstOrCreateFace(f); f == nil {
log.Warnf("marker %s: failed assigning face", sanitize.Log(m.MarkerUID)) log.Warnf("marker %s: failed assigning face", sanitize.Log(m.MarkerUID))

View file

@ -2,6 +2,7 @@ package face
import ( import (
"encoding/json" "encoding/json"
"fmt"
"strings" "strings"
"github.com/photoprism/photoprism/pkg/clusters" "github.com/photoprism/photoprism/pkg/clusters"
@ -26,34 +27,42 @@ func NewEmbedding(inference []float32) Embedding {
return result return result
} }
// Blacklisted tests if the face embedding is blacklisted. // IgnoreFace tests whether the embedding is generally unsuitable for matching.
func (m Embedding) Blacklisted() bool { func (m Embedding) IgnoreFace() bool {
return Blacklist.Contains(m, BlacklistRadius) if IgnoreDist <= 0 {
return false
}
return IgnoreEmbeddings.Contains(m, IgnoreDist)
} }
// Child tests if the face embedding belongs to a child. // KidsFace tests if the embedded face belongs to a baby or young child.
func (m Embedding) Child() bool { func (m Embedding) KidsFace() bool {
return Children.Contains(m, ChildrenRadius) if KidsDist <= 0 {
return false
}
return KidsEmbeddings.Contains(m, KidsDist)
} }
// Unsuitable tests if the face embedding is unsuitable for clustering and matching. // OmitMatch tests if the face embedding is unsuitable for matching.
func (m Embedding) Unsuitable() bool { func (m Embedding) OmitMatch() bool {
return m.Child() || m.Blacklisted() return m.KidsFace() || m.IgnoreFace()
} }
// Distance calculates the distance to another face embedding. // CanMatch tests if the face embedding is not blacklisted.
func (m Embedding) Distance(other Embedding) float64 { func (m Embedding) CanMatch() bool {
return clusters.EuclideanDistance(m, other) return !m.IgnoreFace()
}
// Dist calculates the distance to another face embedding.
func (m Embedding) Dist(other Embedding) float64 {
return clusters.EuclideanDist(m, other)
} }
// Magnitude returns the face embedding vector length (magnitude). // Magnitude returns the face embedding vector length (magnitude).
func (m Embedding) Magnitude() float64 { func (m Embedding) Magnitude() float64 {
return m.Distance(NullEmbedding) return m.Dist(NullEmbedding)
}
// NotBlacklisted tests if the face embedding is not blacklisted.
func (m Embedding) NotBlacklisted() bool {
return !m.Blacklisted()
} }
// JSON returns the face embedding as JSON bytes. // JSON returns the face embedding as JSON bytes.
@ -72,14 +81,14 @@ func (m Embedding) JSON() []byte {
} }
// UnmarshalEmbedding parses a single face embedding JSON. // UnmarshalEmbedding parses a single face embedding JSON.
func UnmarshalEmbedding(s string) (result Embedding) { func UnmarshalEmbedding(s string) (result Embedding, err error) {
if !strings.HasPrefix(s, "[") { if s == "" {
return nil return result, fmt.Errorf("cannot unmarshal embedding, empty string provided")
} else if !strings.HasPrefix(s, "[") {
return result, fmt.Errorf("cannot unmarshal embedding, invalid json provided")
} }
if err := json.Unmarshal([]byte(s), &result); err != nil { err = json.Unmarshal([]byte(s), &result)
log.Errorf("faces: %s", err)
}
return result return result, err
} }

File diff suppressed because one or more lines are too long

View file

@ -2,6 +2,7 @@ package face
import ( import (
"encoding/json" "encoding/json"
"fmt"
"strings" "strings"
"github.com/montanaflynn/stats" "github.com/montanaflynn/stats"
@ -21,7 +22,7 @@ func NewEmbeddings(inference [][]float32) Embeddings {
for i, v = range inference { for i, v = range inference {
e := NewEmbedding(v) e := NewEmbedding(v)
if e.NotBlacklisted() { if e.CanMatch() {
result[i] = e result[i] = e
} }
} }
@ -75,7 +76,7 @@ func (embeddings Embeddings) Float64() [][]float64 {
// Contains tests if another embeddings is contained within a radius. // Contains tests if another embeddings is contained within a radius.
func (embeddings Embeddings) Contains(other Embedding, radius float64) bool { func (embeddings Embeddings) Contains(other Embedding, radius float64) bool {
for _, e := range embeddings { for _, e := range embeddings {
if d := e.Distance(other); d < radius { if d := e.Dist(other); d < radius {
return true return true
} }
} }
@ -83,12 +84,12 @@ func (embeddings Embeddings) Contains(other Embedding, radius float64) bool {
return false return false
} }
// Distance returns the minimum distance to an embedding. // Dist returns the minimum distance to an embedding.
func (embeddings Embeddings) Distance(other Embedding) (dist float64) { func (embeddings Embeddings) Dist(other Embedding) (dist float64) {
dist = -1 dist = -1
for _, e := range embeddings { for _, e := range embeddings {
if d := e.Distance(other); d < dist || dist < 0 { if d := e.Dist(other); d < dist || dist < 0 {
dist = d dist = d
} }
} }
@ -153,7 +154,7 @@ func EmbeddingsMidpoint(embeddings Embeddings) (result Embedding, radius float64
// Radius is the max embedding distance + 0.01 from result. // Radius is the max embedding distance + 0.01 from result.
for _, emb := range embeddings { for _, emb := range embeddings {
if d := clusters.EuclideanDistance(result, emb); d > radius { if d := clusters.EuclideanDist(result, emb); d > radius {
radius = d + 0.01 radius = d + 0.01
} }
} }
@ -162,14 +163,14 @@ func EmbeddingsMidpoint(embeddings Embeddings) (result Embedding, radius float64
} }
// UnmarshalEmbeddings parses face embedding JSON. // UnmarshalEmbeddings parses face embedding JSON.
func UnmarshalEmbeddings(s string) (result Embeddings) { func UnmarshalEmbeddings(s string) (result Embeddings, err error) {
if !strings.HasPrefix(s, "[[") { if s == "" {
return nil return result, fmt.Errorf("cannot unmarshal empeddings, empty string provided")
} else if !strings.HasPrefix(s, "[[") {
return result, fmt.Errorf("cannot unmarshal empeddings, invalid json provided")
} }
if err := json.Unmarshal([]byte(s), &result); err != nil { err = json.Unmarshal([]byte(s), &result)
log.Errorf("faces: %s", err)
}
return result return result, err
} }

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -103,7 +103,7 @@ func TestNet(t *testing.T) {
t.Fatal(err) t.Fatal(err)
} }
// Distance Matrix // Dist Matrix
correct := 0 correct := 0
for i := 0; i < len(embeddings); i++ { for i := 0; i < len(embeddings); i++ {
@ -112,7 +112,7 @@ func TestNet(t *testing.T) {
continue continue
} }
dist := embeddings[i].Distance(embeddings[j]) dist := embeddings[i].Dist(embeddings[j])
t.Logf("Dist for %d %d (faces are %d %d) is %f", i, j, faceIndexToPersonID[i], faceIndexToPersonID[j], dist) t.Logf("Dist for %d %d (faces are %d %d) is %f", i, j, faceIndexToPersonID[i], faceIndexToPersonID[j], dist)
if faceIndexToPersonID[i] == faceIndexToPersonID[j] { if faceIndexToPersonID[i] == faceIndexToPersonID[j] {

View file

@ -12,7 +12,7 @@ var ClusterScoreThreshold = 15 // Min score for faces forming
var SizeThreshold = 50 // Min face size in pixels. var SizeThreshold = 50 // Min face size in pixels.
var ClusterSizeThreshold = 80 // Min size for faces forming a cluster in pixels. var ClusterSizeThreshold = 80 // Min size for faces forming a cluster in pixels.
var ClusterDist = 0.64 // Similarity distance threshold of faces forming a cluster core. var ClusterDist = 0.64 // Similarity distance threshold of faces forming a cluster core.
var MatchDist = 0.46 // Distance offset threshold for matching new faces with clusters. var MatchDist = 0.46 // Dist offset threshold for matching new faces with clusters.
var ClusterCore = 4 // Min number of faces forming a cluster core. var ClusterCore = 4 // Min number of faces forming a cluster core.
var SampleThreshold = 2 * ClusterCore // Threshold for automatic clustering to start. var SampleThreshold = 2 * ClusterCore // Threshold for automatic clustering to start.

View file

@ -40,7 +40,7 @@ func (w *Faces) Cluster(opt FacesOptions) (added entity.Faces, err error) {
var c clusters.HardClusterer var c clusters.HardClusterer
// See https://dl.photoprism.app/research/ for research on face clustering algorithms. // See https://dl.photoprism.app/research/ for research on face clustering algorithms.
if c, err = clusters.DBSCAN(face.ClusterCore, face.ClusterDist, w.conf.Workers(), clusters.EuclideanDistance); err != nil { if c, err = clusters.DBSCAN(face.ClusterCore, face.ClusterDist, w.conf.Workers(), clusters.EuclideanDist); err != nil {
return added, err return added, err
} else if err = c.Learn(embeddings.Float64()); err != nil { } else if err = c.Learn(embeddings.Float64()); err != nil {
return added, err return added, err
@ -73,7 +73,7 @@ func (w *Faces) Cluster(opt FacesOptions) (added entity.Faces, err error) {
for _, cluster := range results { for _, cluster := range results {
if f := entity.NewFace("", entity.SrcAuto, cluster); f == nil { if f := entity.NewFace("", entity.SrcAuto, cluster); f == nil {
log.Errorf("faces: face should not be nil - bug?") log.Errorf("faces: face should not be nil - bug?")
} else if f.Unsuitable() { } else if f.OmitMatch() {
log.Infof("faces: ignoring %s, cluster unsuitable for matching", f.ID) log.Infof("faces: ignoring %s, cluster unsuitable for matching", f.ID)
} else if err := f.Create(); err == nil { } else if err := f.Create(); err == nil {
added = append(added, *f) added = append(added, *f)

View file

@ -122,7 +122,7 @@ func (w *Faces) MatchFaces(faces entity.Faces, force bool, matchedBefore *time.T
// Pointer to the matching face. // Pointer to the matching face.
var f *entity.Face var f *entity.Face
// Distance to the matching face. // Dist to the matching face.
var d float64 var d float64
// Find the closest face match for marker. // Find the closest face match for marker.

View file

@ -26,7 +26,7 @@ func (w *Faces) Stats() (err error) {
continue continue
} }
d := embeddings[i].Distance(embeddings[j]) d := embeddings[i].Dist(embeddings[j])
if min < 0 || d < min { if min < 0 || d < min {
min = d min = d
@ -84,7 +84,7 @@ func (w *Faces) Stats() (err error) {
continue continue
} }
d := e1.Distance(f2.Embedding()) d := e1.Dist(f2.Embedding())
if min < 0 || d < min { if min < 0 || d < min {
min = d min = d

View file

@ -102,7 +102,11 @@ func Embeddings(single, unclustered bool, size, score int) (result face.Embeddin
} }
for _, embeddingsJson := range col { for _, embeddingsJson := range col {
if embeddings := face.UnmarshalEmbeddings(embeddingsJson); !embeddings.Empty() { if embeddingsJson == "" {
continue
} else if embeddings, err := face.UnmarshalEmbeddings(embeddingsJson); err != nil {
log.Warnf("faces: %s", err)
} else if !embeddings.Empty() {
if single { if single {
// Single embedding per face detected. // Single embedding per face detected.
result = append(result, embeddings[0]) result = append(result, embeddings[0])

View file

@ -34,8 +34,8 @@ var observation []float64
// Create a new KMeans++ clusterer with 1000 iterations, // Create a new KMeans++ clusterer with 1000 iterations,
// 8 clusters and a distance measurement function of type func([]float64, []float64) float64). // 8 clusters and a distance measurement function of type func([]float64, []float64) float64).
// Pass nil to use clusters.EuclideanDistance // Pass nil to use clusters.EuclideanDist
c, e := clusters.KMeans(1000, 8, clusters.EuclideanDistance) c, e := clusters.KMeans(1000, 8, clusters.EuclideanDist)
if e != nil { if e != nil {
panic(e) panic(e)
} }
@ -59,7 +59,7 @@ Algorithms currenly supported are KMeans++, DBSCAN and OPTICS.
Algorithms which support online learning can be trained this way using Online() function, which relies on channel communication to coordinate the process: Algorithms which support online learning can be trained this way using Online() function, which relies on channel communication to coordinate the process:
```go ```go
c, e := clusters.KmeansClusterer(1000, 8, clusters.EuclideanDistance) c, e := clusters.KmeansClusterer(1000, 8, clusters.EuclideanDist)
if e != nil { if e != nil {
panic(e) panic(e)
} }
@ -104,8 +104,8 @@ The Estimator interface defines an operation of guessing an optimal number of cl
var data [][]float64 var data [][]float64
// Create a new KMeans++ estimator with 1000 iterations, // Create a new KMeans++ estimator with 1000 iterations,
// a maximum of 8 clusters and default (EuclideanDistance) distance measurement // a maximum of 8 clusters and default (EuclideanDist) distance measurement
c, e := clusters.KMeansEstimator(1000, 8, clusters.EuclideanDistance) c, e := clusters.KMeansEstimator(1000, 8, clusters.EuclideanDist)
if e != nil { if e != nil {
panic(e) panic(e)
} }

View file

@ -6,9 +6,9 @@ import (
"math" "math"
) )
// DistanceFunc represents a function for measuring distance // DistFunc represents a function for measuring distance
// between n-dimensional vectors. // between n-dimensional vectors.
type DistanceFunc func([]float64, []float64) float64 type DistFunc func([]float64, []float64) float64
// Online represents parameters important for online learning in // Online represents parameters important for online learning in
// clustering algorithms. // clustering algorithms.
@ -73,8 +73,8 @@ type Importer interface {
} }
var ( var (
// EuclideanDistance is one of the common distance measurement // EuclideanDist is one of the common distance measurement
EuclideanDistance = func(a, b []float64) float64 { EuclideanDist = func(a, b []float64) float64 {
var ( var (
s, t float64 s, t float64
) )
@ -87,8 +87,8 @@ var (
return math.Sqrt(s) return math.Sqrt(s)
} }
// EuclideanDistanceSquared is one of the common distance measurement // EuclideanDistSquared is one of the common distance measurement
EuclideanDistanceSquared = func(a, b []float64) float64 { EuclideanDistSquared = func(a, b []float64) float64 {
var ( var (
s, t float64 s, t float64
) )

View file

@ -8,7 +8,7 @@ type dbscanClusterer struct {
minpts, workers int minpts, workers int
eps float64 eps float64
distance DistanceFunc distance DistFunc
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation. // slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
mu sync.RWMutex mu sync.RWMutex
@ -40,7 +40,7 @@ type dbscanClusterer struct {
// Implementation of DBSCAN algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently // Implementation of DBSCAN algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently
// is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily. // is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily.
func DBSCAN(minpts int, eps float64, workers int, distance DistanceFunc) (HardClusterer, error) { func DBSCAN(minpts int, eps float64, workers int, distance DistFunc) (HardClusterer, error) {
if minpts < 1 { if minpts < 1 {
return nil, errZeroMinpts return nil, errZeroMinpts
} }
@ -53,12 +53,12 @@ func DBSCAN(minpts int, eps float64, workers int, distance DistanceFunc) (HardCl
return nil, errZeroEpsilon return nil, errZeroEpsilon
} }
var d DistanceFunc var d DistFunc
{ {
if distance != nil { if distance != nil {
d = distance d = distance
} else { } else {
d = EuclideanDistance d = EuclideanDist
} }
} }

View file

@ -56,7 +56,7 @@ func TestDBSCANCluster(t *testing.T) {
}, },
} }
for _, test := range tests { for _, test := range tests {
c, e := DBSCAN(test.MinPts, test.Eps, 0, EuclideanDistance) c, e := DBSCAN(test.MinPts, test.Eps, 0, EuclideanDist)
if e != nil { if e != nil {
t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error()) t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error())
} }

View file

@ -23,7 +23,7 @@ type kmeansClusterer struct {
alpha float64 alpha float64
dimension int dimension int
distance DistanceFunc distance DistFunc
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation. // slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
mu sync.RWMutex mu sync.RWMutex
@ -37,7 +37,7 @@ type kmeansClusterer struct {
} }
// Implementation of k-means++ algorithm with online learning // Implementation of k-means++ algorithm with online learning
func KMeans(iterations, clusters int, distance DistanceFunc) (HardClusterer, error) { func KMeans(iterations, clusters int, distance DistFunc) (HardClusterer, error) {
if iterations < 1 { if iterations < 1 {
return nil, errZeroIterations return nil, errZeroIterations
} }
@ -46,12 +46,12 @@ func KMeans(iterations, clusters int, distance DistanceFunc) (HardClusterer, err
return nil, errOneCluster return nil, errOneCluster
} }
var d DistanceFunc var d DistFunc
{ {
if distance != nil { if distance != nil {
d = distance d = distance
} else { } else {
d = EuclideanDistance d = EuclideanDist
} }
} }

View file

@ -14,7 +14,7 @@ type kmeansEstimator struct {
// variables keeping count of changes of points' membership every iteration. User as a stopping condition. // variables keeping count of changes of points' membership every iteration. User as a stopping condition.
changes, oldchanges, counter, threshold int changes, oldchanges, counter, threshold int
distance DistanceFunc distance DistFunc
a, b []int a, b []int
@ -28,7 +28,7 @@ type kmeansEstimator struct {
// Implementation of cluster number estimator using gap statistic // Implementation of cluster number estimator using gap statistic
// ("Estimating the number of clusters in a data set via the gap statistic", Tibshirani et al.) with k-means++ as // ("Estimating the number of clusters in a data set via the gap statistic", Tibshirani et al.) with k-means++ as
// clustering algorithm // clustering algorithm
func KMeansEstimator(iterations, clusters int, distance DistanceFunc) (Estimator, error) { func KMeansEstimator(iterations, clusters int, distance DistFunc) (Estimator, error) {
if iterations < 1 { if iterations < 1 {
return nil, errZeroIterations return nil, errZeroIterations
} }
@ -37,12 +37,12 @@ func KMeansEstimator(iterations, clusters int, distance DistanceFunc) (Estimator
return nil, errOneCluster return nil, errOneCluster
} }
var d DistanceFunc var d DistFunc
{ {
if distance != nil { if distance != nil {
d = distance d = distance
} else { } else {
d = EuclideanDistance d = EuclideanDist
} }
} }
@ -226,7 +226,7 @@ func (c *kmeansEstimator) wk(data [][]float64, centroids [][]float64, mapping []
) )
for i := 0; i < len(mapping); i++ { for i := 0; i < len(mapping); i++ {
wk[mapping[i]-1] += EuclideanDistanceSquared(centroids[mapping[i]-1], data[i]) / l wk[mapping[i]-1] += EuclideanDistSquared(centroids[mapping[i]-1], data[i]) / l
} }
return floats.Sum(wk) return floats.Sum(wk)

View file

@ -20,7 +20,7 @@ func TestKmeansEstimator(t *testing.T) {
t.Errorf("Error importing data: %s\n", e.Error()) t.Errorf("Error importing data: %s\n", e.Error())
} }
c, e := KMeansEstimator(1000, C, EuclideanDistance) c, e := KMeansEstimator(1000, C, EuclideanDist)
if e != nil { if e != nil {
t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error()) t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error())
} }

View file

@ -19,7 +19,7 @@ func TestKmeansClusterNumberMatches(t *testing.T) {
t.Errorf("Error importing data: %s\n", e.Error()) t.Errorf("Error importing data: %s\n", e.Error())
} }
c, e := KMeans(1000, C, EuclideanDistance) c, e := KMeans(1000, C, EuclideanDist)
if e != nil { if e != nil {
t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error()) t.Errorf("Error initializing kmeans clusterer: %s\n", e.Error())
} }

View file

@ -18,7 +18,7 @@ type opticsClusterer struct {
minpts, workers int minpts, workers int
eps, xi, x float64 eps, xi, x float64
distance DistanceFunc distance DistFunc
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation. // slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
mu sync.RWMutex mu sync.RWMutex
@ -48,7 +48,7 @@ type opticsClusterer struct {
// Implementation of OPTICS algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently // Implementation of OPTICS algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently
// is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily. // is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily.
func OPTICS(minpts int, eps, xi float64, workers int, distance DistanceFunc) (HardClusterer, error) { func OPTICS(minpts int, eps, xi float64, workers int, distance DistFunc) (HardClusterer, error) {
if minpts < 1 { if minpts < 1 {
return nil, errZeroMinpts return nil, errZeroMinpts
} }
@ -65,12 +65,12 @@ func OPTICS(minpts int, eps, xi float64, workers int, distance DistanceFunc) (Ha
return nil, errZeroXi return nil, errZeroXi
} }
var d DistanceFunc var d DistFunc
{ {
if distance != nil { if distance != nil {
d = distance d = distance
} else { } else {
d = EuclideanDistance d = EuclideanDist
} }
} }
@ -191,7 +191,7 @@ func (c *opticsClusterer) run() {
c.so = append(c.so, i) c.so = append(c.so, i)
if d = c.coreDistance(i, l, ns); d != 0 { if d = c.coreDist(i, l, ns); d != 0 {
q = newPriorityQueue(l) q = newPriorityQueue(l)
c.update(i, d, l, ns, &q) c.update(i, d, l, ns, &q)
@ -205,7 +205,7 @@ func (c *opticsClusterer) run() {
c.so = append(c.so, p.v) c.so = append(c.so, p.v)
if d = c.coreDistance(p.v, l, nss); d != 0 { if d = c.coreDist(p.v, l, nss); d != 0 {
c.update(p.v, d, l, nss, &q) c.update(p.v, d, l, nss, &q)
} }
} }
@ -213,7 +213,7 @@ func (c *opticsClusterer) run() {
} }
} }
func (c *opticsClusterer) coreDistance(p int, l int, r []int) float64 { func (c *opticsClusterer) coreDist(p int, l int, r []int) float64 {
if l < c.minpts { if l < c.minpts {
return 0 return 0
} }