photoprism/internal/face/face_test.go

272 lines
5.4 KiB
Go
Raw Normal View History

package face
import (
"encoding/json"
"os"
"path/filepath"
"strings"
"testing"
2021-09-05 17:10:52 +02:00
"github.com/photoprism/photoprism/internal/crop"
"github.com/photoprism/photoprism/pkg/fastwalk"
"github.com/stretchr/testify/assert"
)
var modelPath, _ = filepath.Abs("../../assets/facenet")
func TestDetect(t *testing.T) {
expected := map[string]int{
"1.jpg": 1,
"2.jpg": 1,
"3.jpg": 1,
"4.jpg": 1,
"5.jpg": 1,
"6.jpg": 1,
"7.jpg": 0,
"8.jpg": 0,
"9.jpg": 0,
"10.jpg": 0,
"11.jpg": 0,
"12.jpg": 1,
"13.jpg": 0,
"14.jpg": 0,
"15.jpg": 0,
"16.jpg": 1,
"17.jpg": 1,
"18.jpg": 2,
"19.jpg": 0,
}
faceindices := map[string][]int{
"18.jpg": {0, 1},
"1.jpg": {2},
"4.jpg": {3},
"5.jpg": {4},
"6.jpg": {5},
"2.jpg": {6},
"12.jpg": {7},
"16.jpg": {8},
"17.jpg": {9},
"3.jpg": {10},
}
faceindexToPersonid := [11]int{
0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 0,
}
var embeddings [11][]float32
2021-09-05 17:10:52 +02:00
faceNet := NewNet(modelPath, "testdata/cache", false)
2021-09-05 17:10:52 +02:00
if err := faceNet.loadModel(); err != nil {
t.Fatal(err)
}
if err := fastwalk.Walk("testdata", func(fileName string, info os.FileMode) error {
if info.IsDir() || strings.HasPrefix(filepath.Base(fileName), ".") || strings.Contains(fileName, "cache") {
return nil
}
t.Run(fileName, func(t *testing.T) {
baseName := filepath.Base(fileName)
faces, err := Detect(fileName, true, 20)
2021-09-05 17:10:52 +02:00
if err != nil {
t.Fatal(err)
}
t.Logf("found %d faces in '%s'", len(faces), baseName)
if len(faces) > 0 {
2021-09-05 17:10:52 +02:00
// t.Logf("results: %#v", faces)
for i, f := range faces {
t.Logf("marker[%d]: %#v %#v", i, f.CropArea(), f.Area)
t.Logf("landmarks[%d]: %s", i, f.RelativeLandmarksJSON())
img, err := crop.ImageFromThumb(fileName, f.CropArea(), CropSize, false)
if err != nil {
t.Fatal(err)
}
2021-09-05 17:10:52 +02:00
embedding := faceNet.getEmbeddings(img)
if b, err := json.Marshal(embedding[0]); err != nil {
t.Fatal(err)
} else {
2021-09-05 17:10:52 +02:00
assert.NotEmpty(t, b)
// t.Logf("embedding: %#v", string(b))
}
t.Logf("faces: %d %v", i, faceindices[baseName])
embeddings[faceindices[baseName][i]] = embedding[0]
}
}
if i, ok := expected[baseName]; ok {
assert.Equal(t, i, len(faces))
assert.Equal(t, i, faces.Count())
if faces.Count() == 0 {
assert.Equal(t, 100, faces.Uncertainty())
} else {
assert.Truef(t, faces.Uncertainty() >= 0 && faces.Uncertainty() <= 50, "uncertainty should be between 0 and 50")
}
t.Logf("uncertainty: %d", faces.Uncertainty())
} else {
t.Logf("unknown test result for %s", baseName)
}
})
return nil
}); err != nil {
t.Fatal(err)
}
// Distance Matrix
correct := 0
for i := 0; i < len(embeddings); i++ {
for j := 0; j < len(embeddings); j++ {
if i >= j {
continue
}
dist := EuclidianDistance(embeddings[i], embeddings[j])
t.Logf("Dist for %d %d (faces are %d %d) is %f", i, j, faceindexToPersonid[i], faceindexToPersonid[j], dist)
if faceindexToPersonid[i] == faceindexToPersonid[j] {
if dist < 1.21 {
correct += 1
}
} else {
if dist >= 1.21 {
correct += 1
}
}
}
}
t.Logf("Correct for %d", correct)
// there are a few incorrect results
// 4 out of 55 with the 1.21 threshold
assert.True(t, correct == 51)
}
2021-08-30 17:48:56 +02:00
func TestFaces_Uncertainty(t *testing.T) {
t.Run("maxScore = 310", func(t *testing.T) {
f := Faces{Face{Score: 310}, Face{Score: 210}}
assert.Equal(t, 1, f.Uncertainty())
})
t.Run("maxScore = 210", func(t *testing.T) {
f := Faces{Face{Score: 210}, Face{Score: 210}}
assert.Equal(t, 5, f.Uncertainty())
})
t.Run("maxScore = 66", func(t *testing.T) {
f := Faces{Face{Score: 66}, Face{Score: 66}}
assert.Equal(t, 20, f.Uncertainty())
})
t.Run("maxScore = 10", func(t *testing.T) {
f := Faces{Face{Score: 10}, Face{Score: 10}}
assert.Equal(t, 50, f.Uncertainty())
})
}
func TestFace_Size(t *testing.T) {
t.Run("8", func(t *testing.T) {
f := Face{
Rows: 8,
Cols: 1,
Score: 200,
2021-09-02 23:47:37 +02:00
Area: Area{
2021-08-30 17:48:56 +02:00
Name: "",
Row: 0,
Col: 0,
Scale: 8,
},
Eyes: nil,
Landmarks: nil,
Embeddings: nil,
}
assert.Equal(t, 8, f.Size())
})
}
func TestFace_Dim(t *testing.T) {
t.Run("3", func(t *testing.T) {
f := Face{
Rows: 8,
Cols: 3,
Score: 200,
2021-09-02 23:47:37 +02:00
Area: Area{
2021-08-30 17:48:56 +02:00
Name: "",
Row: 0,
Col: 0,
Scale: 8,
},
Eyes: nil,
Landmarks: nil,
Embeddings: nil,
}
assert.Equal(t, float32(3), f.Dim())
})
t.Run("1", func(t *testing.T) {
f := Face{
Rows: 8,
Cols: 0,
Score: 200,
2021-09-02 23:47:37 +02:00
Area: Area{
2021-08-30 17:48:56 +02:00
Name: "",
Row: 0,
Col: 0,
Scale: 8,
},
Eyes: nil,
Landmarks: nil,
Embeddings: nil,
}
assert.Equal(t, float32(1), f.Dim())
})
}
func TestFace_EmbeddingsJSON(t *testing.T) {
t.Run("no result", func(t *testing.T) {
f := Face{
Rows: 8,
Cols: 1,
Score: 200,
2021-09-02 23:47:37 +02:00
Area: Area{
2021-08-30 17:48:56 +02:00
Name: "",
Row: 0,
Col: 0,
Scale: 8,
},
Eyes: nil,
Landmarks: nil,
Embeddings: nil,
}
assert.Equal(t, []byte{0x6e, 0x75, 0x6c, 0x6c}, f.EmbeddingsJSON())
})
}
2021-09-02 23:47:37 +02:00
func TestFace_CropArea(t *testing.T) {
2021-09-02 23:47:37 +02:00
t.Run("Position", func(t *testing.T) {
f := Face{
Cols: 1000,
Rows: 600,
Score: 125,
Area: Area{
Name: "face",
Col: 400,
Row: 250,
Scale: 200,
},
Eyes: nil,
Landmarks: nil,
Embeddings: nil,
}
t.Logf("marker: %#v", f.CropArea())
2021-09-02 23:47:37 +02:00
})
}