photoprism/pkg/clusters/kmeans.go

327 lines
5.3 KiB
Go
Raw Normal View History

package clusters
import (
"math"
"math/rand"
"sync"
"time"
"gonum.org/v1/gonum/floats"
)
const (
changesThreshold = 2
)
type kmeansClusterer struct {
iterations, number int
// variables keeping count of changes of points' membership every iteration. User as a stopping condition.
changes, oldchanges, counter, threshold int
// For online learning only
alpha float64
dimension int
distance DistFunc
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
mu sync.RWMutex
a, b []int
// slices holding values of centroids of each clusters
m, n [][]float64
// dataset
d [][]float64
}
// Implementation of k-means++ algorithm with online learning
func KMeans(iterations, clusters int, distance DistFunc) (HardClusterer, error) {
if iterations < 1 {
return nil, errZeroIterations
}
if clusters < 2 {
return nil, errOneCluster
}
var d DistFunc
{
if distance != nil {
d = distance
} else {
d = EuclideanDist
}
}
return &kmeansClusterer{
iterations: iterations,
number: clusters,
distance: d,
}, nil
}
func (c *kmeansClusterer) IsOnline() bool {
return true
}
func (c *kmeansClusterer) WithOnline(o Online) HardClusterer {
c.alpha = o.Alpha
c.dimension = o.Dimension
c.d = make([][]float64, 0, 100)
c.initializeMeans()
return c
}
func (c *kmeansClusterer) Learn(data [][]float64) error {
if len(data) == 0 {
return errEmptySet
}
c.mu.Lock()
c.d = data
c.a = make([]int, len(data))
c.b = make([]int, c.number)
c.counter = 0
c.threshold = changesThreshold
c.changes = 0
c.oldchanges = 0
c.initializeMeansWithData()
for i := 0; i < c.iterations && c.counter != c.threshold; i++ {
c.run()
c.check()
}
c.n = nil
c.mu.Unlock()
return nil
}
func (c *kmeansClusterer) Sizes() []int {
c.mu.RLock()
defer c.mu.RUnlock()
return c.b
}
func (c *kmeansClusterer) Guesses() []int {
c.mu.RLock()
defer c.mu.RUnlock()
return c.a
}
func (c *kmeansClusterer) Predict(p []float64) int {
var (
l int
d float64
m float64 = c.distance(p, c.m[0])
)
for i := 1; i < c.number; i++ {
if d = c.distance(p, c.m[i]); d < m {
m = d
l = i
}
}
return l
}
func (c *kmeansClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent {
c.mu.Lock()
var (
r chan *HCEvent = make(chan *HCEvent)
l, f int = len(c.m), len(c.m[0])
h float64 = 1 - c.alpha
)
c.b = make([]int, c.number)
/* The first step of online learning is adjusting the centroids by finding the one closes to new data point
* and modifying it's location using given alpha. Once the client quits sending new data, the actual clusters
* are computed and the mutex is unlocked. */
go func() {
for {
select {
case o := <-observations:
var (
k int
n float64
m float64 = math.Pow(c.distance(o, c.m[0]), 2)
)
for i := 1; i < l; i++ {
if n = math.Pow(c.distance(o, c.m[i]), 2); n < m {
m = n
k = i
}
}
r <- &HCEvent{
Cluster: k,
Observation: o,
}
for i := 0; i < f; i++ {
c.m[k][i] = c.alpha*o[i] + h*c.m[k][i]
}
c.d = append(c.d, o)
case <-done:
go func() {
var (
n int
d, m float64
)
c.a = make([]int, len(c.d))
for i := 0; i < len(c.d); i++ {
m = c.distance(c.d[i], c.m[0])
n = 0
for j := 1; j < c.number; j++ {
if d = c.distance(c.d[i], c.m[j]); d < m {
m = d
n = j
}
}
c.a[i] = n + 1
c.b[n]++
}
c.mu.Unlock()
}()
return
}
}
}()
return r
}
// private
func (c *kmeansClusterer) initializeMeansWithData() {
c.m = make([][]float64, c.number)
c.n = make([][]float64, c.number)
rand.Seed(time.Now().UTC().Unix())
var (
k int
s, t, l, f float64
d []float64 = make([]float64, len(c.d))
)
c.m[0] = c.d[rand.Intn(len(c.d)-1)]
for i := 1; i < c.number; i++ {
s = 0
t = 0
for j := 0; j < len(c.d); j++ {
l = c.distance(c.m[0], c.d[j])
for g := 1; g < i; g++ {
if f = c.distance(c.m[g], c.d[j]); f < l {
l = f
}
}
d[j] = math.Pow(l, 2)
s += d[j]
}
t = rand.Float64() * s
k = 0
for s = d[0]; s < t; s += d[k] {
k++
}
c.m[i] = c.d[k]
}
for i := 0; i < c.number; i++ {
c.n[i] = make([]float64, len(c.m[0]))
}
}
func (c *kmeansClusterer) initializeMeans() {
c.m = make([][]float64, c.number)
rand.Seed(time.Now().UTC().Unix())
for i := 0; i < c.number; i++ {
c.m[i] = make([]float64, c.dimension)
for j := 0; j < c.dimension; j++ {
c.m[i][j] = 10 * (rand.Float64() - 0.5)
}
}
}
func (c *kmeansClusterer) run() {
var (
l, k, n int = len(c.m[0]), 0, 0
m, d float64
)
for i := 0; i < c.number; i++ {
c.b[i] = 0
}
for i := 0; i < len(c.d); i++ {
m = c.distance(c.d[i], c.m[0])
n = 0
for j := 1; j < c.number; j++ {
if d = c.distance(c.d[i], c.m[j]); d < m {
m = d
n = j
}
}
k = n + 1
if c.a[i] != k {
c.changes++
}
c.a[i] = k
c.b[n]++
floats.Add(c.n[n], c.d[i])
}
for i := 0; i < c.number; i++ {
floats.Scale(1/float64(c.b[i]), c.n[i])
for j := 0; j < l; j++ {
c.m[i][j] = c.n[i][j]
c.n[i][j] = 0
}
}
}
func (c *kmeansClusterer) check() {
if c.changes == c.oldchanges {
c.counter++
}
c.oldchanges = c.changes
}