558 lines
8.8 KiB
Go
558 lines
8.8 KiB
Go
|
package clusters
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"sync"
|
||
|
)
|
||
|
|
||
|
type steepDownArea struct {
|
||
|
start, end int
|
||
|
mib float64
|
||
|
}
|
||
|
|
||
|
type clusterJob struct {
|
||
|
a, b, n int
|
||
|
}
|
||
|
|
||
|
type opticsClusterer struct {
|
||
|
minpts, workers int
|
||
|
eps, xi, x float64
|
||
|
|
||
|
distance DistanceFunc
|
||
|
|
||
|
// slices holding the cluster mapping and sizes. Access is synchronized to avoid read during computation.
|
||
|
mu sync.RWMutex
|
||
|
a, b []int
|
||
|
|
||
|
// variables used for concurrent computation of nearest neighbours and producing final mapping
|
||
|
l, s, o, f, g int
|
||
|
j chan *rangeJob
|
||
|
c chan *clusterJob
|
||
|
m *sync.Mutex
|
||
|
w *sync.WaitGroup
|
||
|
r *[]int
|
||
|
p []float64
|
||
|
|
||
|
// visited points
|
||
|
v []bool
|
||
|
|
||
|
// reachability distances
|
||
|
re []*pItem
|
||
|
|
||
|
// ordered list of points wrt. reachability distance
|
||
|
so []int
|
||
|
|
||
|
// dataset
|
||
|
d [][]float64
|
||
|
}
|
||
|
|
||
|
// Implementation of OPTICS algorithm with concurrent nearest neighbour computation. The number of goroutines acting concurrently
|
||
|
// is controlled via workers argument. Passing 0 will result in this number being chosen arbitrarily.
|
||
|
func OPTICS(minpts int, eps, xi float64, workers int, distance DistanceFunc) (HardClusterer, error) {
|
||
|
if minpts < 1 {
|
||
|
return nil, errZeroMinpts
|
||
|
}
|
||
|
|
||
|
if workers < 0 {
|
||
|
return nil, errZeroWorkers
|
||
|
}
|
||
|
|
||
|
if eps <= 0 {
|
||
|
return nil, errZeroEpsilon
|
||
|
}
|
||
|
|
||
|
if xi <= 0 {
|
||
|
return nil, errZeroXi
|
||
|
}
|
||
|
|
||
|
var d DistanceFunc
|
||
|
{
|
||
|
if distance != nil {
|
||
|
d = distance
|
||
|
} else {
|
||
|
d = EuclideanDistance
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return &opticsClusterer{
|
||
|
minpts: minpts,
|
||
|
workers: workers,
|
||
|
eps: eps,
|
||
|
xi: xi,
|
||
|
x: 1 - xi,
|
||
|
distance: d,
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) IsOnline() bool {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) WithOnline(o Online) HardClusterer {
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) Learn(data [][]float64) error {
|
||
|
if len(data) == 0 {
|
||
|
return errEmptySet
|
||
|
}
|
||
|
|
||
|
c.mu.Lock()
|
||
|
|
||
|
c.l = len(data)
|
||
|
c.s = c.numWorkers()
|
||
|
c.o = c.s - 1
|
||
|
c.f = c.l / c.s
|
||
|
|
||
|
c.d = data
|
||
|
|
||
|
c.v = make([]bool, c.l)
|
||
|
c.re = make([]*pItem, c.l)
|
||
|
c.so = make([]int, 0, c.l)
|
||
|
c.a = make([]int, c.l)
|
||
|
c.b = make([]int, 0)
|
||
|
|
||
|
c.startNearestWorkers()
|
||
|
|
||
|
c.run()
|
||
|
|
||
|
c.endNearestWorkers()
|
||
|
|
||
|
c.v = nil
|
||
|
c.p = nil
|
||
|
c.r = nil
|
||
|
|
||
|
c.startClusterWorkers()
|
||
|
|
||
|
c.extract()
|
||
|
|
||
|
c.endClusterWorkers()
|
||
|
|
||
|
c.re = nil
|
||
|
c.so = nil
|
||
|
|
||
|
c.mu.Unlock()
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) Sizes() []int {
|
||
|
c.mu.RLock()
|
||
|
defer c.mu.RUnlock()
|
||
|
|
||
|
return c.b
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) Guesses() []int {
|
||
|
c.mu.RLock()
|
||
|
defer c.mu.RUnlock()
|
||
|
|
||
|
return c.a
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) Predict(p []float64) int {
|
||
|
var (
|
||
|
l int
|
||
|
d float64
|
||
|
m float64 = c.distance(p, c.d[0])
|
||
|
)
|
||
|
|
||
|
for i := 1; i < len(c.d); i++ {
|
||
|
if d = c.distance(p, c.d[i]); d < m {
|
||
|
m = d
|
||
|
l = i
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return c.a[l]
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) Online(observations chan []float64, done chan struct{}) chan *HCEvent {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) run() {
|
||
|
var (
|
||
|
l int
|
||
|
d float64
|
||
|
ns, nss []int = make([]int, 0), make([]int, 0)
|
||
|
q priorityQueue
|
||
|
p *pItem
|
||
|
)
|
||
|
|
||
|
for i := 0; i < c.l; i++ {
|
||
|
if c.v[i] {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
c.nearest(i, &l, &ns)
|
||
|
|
||
|
c.v[i] = true
|
||
|
|
||
|
c.so = append(c.so, i)
|
||
|
|
||
|
if d = c.coreDistance(i, l, ns); d != 0 {
|
||
|
q = newPriorityQueue(l)
|
||
|
|
||
|
c.update(i, d, l, ns, &q)
|
||
|
|
||
|
for q.NotEmpty() {
|
||
|
p = q.Pop().(*pItem)
|
||
|
|
||
|
c.nearest(p.v, &l, &nss)
|
||
|
|
||
|
c.v[p.v] = true
|
||
|
|
||
|
c.so = append(c.so, p.v)
|
||
|
|
||
|
if d = c.coreDistance(p.v, l, nss); d != 0 {
|
||
|
c.update(p.v, d, l, nss, &q)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) coreDistance(p int, l int, r []int) float64 {
|
||
|
if l < c.minpts {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
var d, m float64 = 0, c.distance(c.d[p], c.d[r[0]])
|
||
|
|
||
|
for i := 1; i < l; i++ {
|
||
|
if d = c.distance(c.d[p], c.d[r[i]]); d > m {
|
||
|
m = d
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return m
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) update(p int, d float64, l int, r []int, q *priorityQueue) {
|
||
|
for i := 0; i < l; i++ {
|
||
|
if !c.v[r[i]] {
|
||
|
m := math.Max(d, c.distance(c.d[p], c.d[r[i]]))
|
||
|
|
||
|
if c.re[r[i]] == nil {
|
||
|
item := &pItem{
|
||
|
v: r[i],
|
||
|
p: m,
|
||
|
}
|
||
|
|
||
|
c.re[r[i]] = item
|
||
|
|
||
|
q.Push(item)
|
||
|
} else if m < c.re[r[i]].p {
|
||
|
q.Update(c.re[r[i]], c.re[r[i]].v, m)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) extract() {
|
||
|
var (
|
||
|
i, k, e, ue, cs, ce, s, p int = 0, 1, 0, 0, 0, 0, 0, 0
|
||
|
mib, d float64
|
||
|
areas []*steepDownArea = make([]*steepDownArea, 0)
|
||
|
clusters map[int]bool = make(map[int]bool)
|
||
|
)
|
||
|
|
||
|
// first and last points are not assigned the reachability distance, so exclude them from calculations
|
||
|
c.so = c.so[1 : len(c.so)-2]
|
||
|
c.g = len(c.so) - 2
|
||
|
|
||
|
for i < len(c.so)-1 {
|
||
|
mib = math.Max(mib, c.re[c.so[i]].p)
|
||
|
|
||
|
if c.isSteepDown(i, &e) {
|
||
|
as := areas[:0]
|
||
|
for j := 0; j < len(areas); j++ {
|
||
|
if c.re[c.so[areas[j].start]].p*c.x < mib {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
as = append(as, &steepDownArea{
|
||
|
start: areas[j].start,
|
||
|
end: areas[j].end,
|
||
|
mib: math.Max(areas[j].mib, mib),
|
||
|
})
|
||
|
}
|
||
|
areas = as
|
||
|
|
||
|
areas = append(areas, &steepDownArea{
|
||
|
start: i,
|
||
|
end: e,
|
||
|
})
|
||
|
|
||
|
i = e + 1
|
||
|
mib = c.re[c.so[i]].p
|
||
|
} else if c.isSteepUp(i, &e) {
|
||
|
ue = e + 1
|
||
|
|
||
|
as := areas[:0]
|
||
|
for j := 0; j < len(areas); j++ {
|
||
|
if c.re[c.so[areas[j].start]].p*c.x < mib {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
as = append(as, &steepDownArea{
|
||
|
start: areas[j].start,
|
||
|
end: areas[j].end,
|
||
|
mib: math.Max(areas[j].mib, mib),
|
||
|
})
|
||
|
}
|
||
|
areas = as
|
||
|
|
||
|
for j := 0; j < len(areas); j++ {
|
||
|
if c.re[c.so[ue]].p*c.x < areas[j].mib {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
d = (c.re[c.so[areas[j].start]].p - c.re[c.so[ue]].p) / c.re[c.so[areas[j].start]].p
|
||
|
|
||
|
if math.Abs(d) <= c.xi {
|
||
|
cs = areas[j].start
|
||
|
ce = ue
|
||
|
} else if d > c.xi {
|
||
|
for k := areas[j].end; k > areas[j].end; k-- {
|
||
|
if math.Abs((c.re[c.so[k]].p-c.re[c.so[ue]].p)/c.re[c.so[k]].p) <= c.xi {
|
||
|
cs = k
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
ce = ue
|
||
|
} else {
|
||
|
cs = areas[j].start
|
||
|
for k := i; k < e; k++ {
|
||
|
if math.Abs((c.re[c.so[k]].p-c.re[c.so[i]].p)/c.re[c.so[k]].p) <= c.xi {
|
||
|
ce = k
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
p = ce - cs
|
||
|
|
||
|
if p < c.minpts {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
s = ce + cs
|
||
|
|
||
|
if !clusters[s] {
|
||
|
clusters[s] = true
|
||
|
|
||
|
c.b = append(c.b, 0)
|
||
|
c.b[k] = p
|
||
|
|
||
|
c.w.Add(1)
|
||
|
|
||
|
c.c <- &clusterJob{
|
||
|
a: cs,
|
||
|
b: ce,
|
||
|
n: k,
|
||
|
}
|
||
|
|
||
|
k++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i = ue
|
||
|
mib = c.re[c.so[i]].p
|
||
|
} else {
|
||
|
i++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c.w.Wait()
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) isSteepDown(i int, e *int) bool {
|
||
|
if c.re[c.so[i]].p*c.x > c.re[c.so[i+1]].p {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
var counter, j int = 0, i
|
||
|
|
||
|
*e = j
|
||
|
|
||
|
for {
|
||
|
if j > c.g {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
if c.re[c.so[j]].p < c.re[c.so[j+1]].p {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
if c.re[c.so[j]].p*c.x <= c.re[c.so[j+1]].p {
|
||
|
*e = j
|
||
|
counter = 0
|
||
|
} else {
|
||
|
counter++
|
||
|
}
|
||
|
|
||
|
if counter > c.minpts {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
j++
|
||
|
}
|
||
|
|
||
|
return *e != i
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) isSteepUp(i int, e *int) bool {
|
||
|
if c.re[c.so[i]].p > c.re[c.so[i+1]].p*c.x {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
var counter, j int = 0, i
|
||
|
|
||
|
*e = j
|
||
|
|
||
|
for {
|
||
|
if j > c.g {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
if c.re[c.so[j]].p > c.re[c.so[j+1]].p {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
if c.re[c.so[j]].p <= c.re[c.so[j+1]].p*c.x {
|
||
|
*e = j
|
||
|
counter = 0
|
||
|
} else {
|
||
|
counter++
|
||
|
}
|
||
|
|
||
|
if counter > c.minpts {
|
||
|
break
|
||
|
}
|
||
|
|
||
|
j++
|
||
|
}
|
||
|
|
||
|
return *e != i
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) startClusterWorkers() {
|
||
|
c.c = make(chan *clusterJob, c.l)
|
||
|
|
||
|
c.w = &sync.WaitGroup{}
|
||
|
|
||
|
for i := 0; i < c.s; i++ {
|
||
|
go c.clusterWorker()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) endClusterWorkers() {
|
||
|
close(c.c)
|
||
|
|
||
|
c.c = nil
|
||
|
|
||
|
c.w = nil
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) clusterWorker() {
|
||
|
for j := range c.c {
|
||
|
for i := j.a; i < j.b; i++ {
|
||
|
c.a[i] = j.n
|
||
|
}
|
||
|
|
||
|
c.w.Done()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Divide work among c.s workers, where c.s is determined
|
||
|
* by the size of the data. This is based on an assumption that neighbour points of p
|
||
|
* are located in relatively small subsection of the input data, so the dataset can be scanned
|
||
|
* concurrently without blocking a big number of goroutines trying to write to r */
|
||
|
func (c *opticsClusterer) nearest(p int, l *int, r *[]int) {
|
||
|
var b int
|
||
|
|
||
|
*r = (*r)[:0]
|
||
|
|
||
|
c.p = c.d[p]
|
||
|
c.r = r
|
||
|
|
||
|
c.w.Add(c.s)
|
||
|
|
||
|
for i := 0; i < c.l; i += c.f {
|
||
|
if c.l-i <= c.f {
|
||
|
b = c.l - 1
|
||
|
} else {
|
||
|
b = i + c.f
|
||
|
}
|
||
|
|
||
|
c.j <- &rangeJob{
|
||
|
a: i,
|
||
|
b: b,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c.w.Wait()
|
||
|
|
||
|
*l = len(*r)
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) startNearestWorkers() {
|
||
|
c.j = make(chan *rangeJob, c.l)
|
||
|
|
||
|
c.m = &sync.Mutex{}
|
||
|
c.w = &sync.WaitGroup{}
|
||
|
|
||
|
for i := 0; i < c.s; i++ {
|
||
|
go c.nearestWorker()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) endNearestWorkers() {
|
||
|
close(c.j)
|
||
|
|
||
|
c.j = nil
|
||
|
|
||
|
c.m = nil
|
||
|
c.w = nil
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) nearestWorker() {
|
||
|
for j := range c.j {
|
||
|
for i := j.a; i < j.b; i++ {
|
||
|
if c.distance(c.p, c.d[i]) < c.eps {
|
||
|
c.m.Lock()
|
||
|
*c.r = append(*c.r, i)
|
||
|
c.m.Unlock()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c.w.Done()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (c *opticsClusterer) numWorkers() int {
|
||
|
var b int
|
||
|
|
||
|
if c.l < 1000 {
|
||
|
b = 1
|
||
|
} else if c.l < 10000 {
|
||
|
b = 10
|
||
|
} else if c.l < 100000 {
|
||
|
b = 100
|
||
|
} else {
|
||
|
b = 1000
|
||
|
}
|
||
|
|
||
|
if c.workers == 0 {
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
if c.workers < b {
|
||
|
return c.workers
|
||
|
}
|
||
|
|
||
|
return b
|
||
|
}
|