gambas-source-code/main/share/gb_hash_temp.h
Benoît Minisini ea30c3ba1b [DEVELOPMENT ENVIRONMENT]
* NEW: Add a echo button in the output console, that echoes the entered 
  command.

[WIKI]
* NEW: Add a HTTP server requests graph.

[INTERPRETER]
* BUG: The debugger does not change the Key property of collections when
  displaying them.
* NEW: Collection.Key is writable now.

[GB.FORM]
* NEW: FontChooser: Always reset sample text at first use.
* BUG: FontChooser: Fix the behaviour when size changes.


git-svn-id: svn://localhost/gambas/trunk@6222 867c0c6c-44f3-4631-809d-bfa615b0a4ec
2014-04-05 00:28:41 +00:00

532 lines
No EOL
11 KiB
C

/***************************************************************************
gb_hash_temp.h
(c) 2000-2013 Benoît Minisini <gambas@users.sourceforge.net>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.
***************************************************************************/
#define __GB_HASH_C
#include <ctype.h>
#include "gb_common.h"
#include "gb_common_case.h"
#include "gb_common_string.h"
#include "gb_alloc.h"
#include "gb_hash.h"
#define NODE_value(_node) ((void *)((char *)_node) + sizeof(HASH_NODE))
//#define NODE_length(_table, _node) (*((ushort *)(((char *)_node) + sizeof(HASH_NODE) + (_table)->s_value)))
#define NODE_key(_table, _node) ((HASH_KEY *)(((char *)_node) + sizeof(HASH_NODE) + (_table)->s_value))
static void hash_table_resize(HASH_TABLE *hash_table);
static HASH_NODE **hash_table_lookup_node(HASH_TABLE *hash_table, const char *key, int len);
static HASH_NODE *hash_node_new(HASH_TABLE *hash_table, const char *key, int len);
static void hash_node_destroy(HASH_NODE *hash_node);
#ifdef KEEP_ORDER
#else
static void hash_nodes_destroy(HASH_NODE *hash_node);
#endif
// Put a random number in that if you want to be safe on the Internet
uint HASH_seed = 0x9A177BA5;
static const int primes[] =
{
11, 19, 37, 73, 109, 163, 251, 367, 557, 823, 1237, 1861, 2777, 4177, 6247, 9371,
14057, 21089, 31627, 47431, 71143, 106721, 160073, 240101, 360163, 540217, 810343,
1215497, 1823231, 2734867, 4102283, 6153409, 9230113, 13845163
};
//static const uint seed[] = { 0x9A177BA5, 0x9A177BA4, 0x9A177BA7, 0x9A177BA6, 0x9A177BA1, 0x9A177BA0, 0x9A177BA3, 0x9A177BA2, 0x9A177BAD };
static const int nprimes = sizeof (primes) / sizeof (primes[0]);
static int spaced_primes_closest(int num)
{
int i;
for (i = 0; i < nprimes; i++)
if (primes[i] > num)
return primes[i];
return primes[nprimes - 1];
}
// Fast hashing functions. Sometimes Microsoft Research produces useful things.
static uint key_hash_binary(const char *key, int len)
{
static const void *jump[] = { &&__LEN_0, &&__LEN_1, &&__LEN_2, &&__LEN_3, &&__LEN_4, &&__LEN_5, &&__LEN_6, &&__LEN_7, &&__LEN_8 };
uint seed = HASH_seed;
uint hash = seed ^ len;
if (len > 8)
{
key += len - 8;
len = 8;
}
goto *jump[len];
__LEN_8:
hash = hash * seed + key[7];
__LEN_7:
hash = hash * seed + key[6];
__LEN_6:
hash = hash * seed + key[5];
__LEN_5:
hash = hash * seed + key[4];
__LEN_4:
hash = hash * seed + key[3];
__LEN_3:
hash = hash * seed + key[2];
__LEN_2:
hash = hash * seed + key[1];
__LEN_1:
hash = hash * seed + key[0];
__LEN_0:
return hash;
}
static uint key_hash_text(const char *key, int len)
{
static const void *jump[] = { &&__LEN_0, &&__LEN_1, &&__LEN_2, &&__LEN_3, &&__LEN_4, &&__LEN_5, &&__LEN_6, &&__LEN_7, &&__LEN_8 };
uint seed = HASH_seed;
uint hash = seed ^ len;
if (len > 8)
{
key += len - 8;
len = 8;
}
goto *jump[len];
__LEN_8:
hash = hash * seed + ((uint)key[7] & ~0x20U);
__LEN_7:
hash = hash * seed + ((uint)key[6] & ~0x20U);
__LEN_6:
hash = hash * seed + ((uint)key[5] & ~0x20U);
__LEN_5:
hash = hash * seed + ((uint)key[4] & ~0x20U);
__LEN_4:
hash = hash * seed + ((uint)key[3] & ~0x20U);
__LEN_3:
hash = hash * seed + ((uint)key[2] & ~0x20U);
__LEN_2:
hash = hash * seed + ((uint)key[1] & ~0x20U);
__LEN_1:
hash = hash * seed + ((uint)key[0] & ~0x20U);
__LEN_0:
return hash;
}
#define get_hash_func(_hash) ((_hash)->mode ? key_hash_text : key_hash_binary)
void HASH_TABLE_create(HASH_TABLE **hash, size_t s_value, HASH_FLAG mode)
{
HASH_TABLE *hash_table;
/*int i;*/
ALLOC_ZERO(&hash_table, sizeof(HASH_TABLE));
hash_table->size = HASH_TABLE_MIN_SIZE;
hash_table->s_value = s_value;
ALLOC_ZERO(&hash_table->nodes, sizeof(HASH_NODE *) * hash_table->size);
if (mode == HF_IGNORE_CASE)
hash_table->mode = mode;
else
hash_table->mode = HF_NORMAL;
*hash = hash_table;
}
void HASH_TABLE_delete(HASH_TABLE **hash)
{
HASH_TABLE *hash_table = *hash;
if (hash_table == NULL)
return;
#ifdef KEEP_ORDER
HASH_NODE *node, *next;
node = hash_table->sfirst;
hash_table->sfirst = NULL;
hash_table->slast = NULL;
while (node)
{
next = node->snext;
FREE(&node);
node = next;
}
#else
int i;
for (i = 0; i < hash_table->size; i++)
hash_nodes_destroy(hash_table->nodes[i]);
#endif
FREE(&hash_table->nodes);
FREE(hash);
}
int HASH_TABLE_size(HASH_TABLE *hash_table)
{
return hash_table->nnodes;
}
static HASH_NODE **hash_table_lookup_node(HASH_TABLE *hash_table, const char *key, int len)
{
HASH_NODE **node;
HASH_KEY *node_key;
uint hash;
//int n;
if (hash_table->mode)
{
hash = key_hash_text(key, len);
node = &hash_table->nodes[hash % hash_table->size];
//n = 0;
while (*node)
{
node_key = NODE_key(hash_table, *node);
//n++;
if (node_key->len == len && STRING_equal_ignore_case_same(key, node_key->key, len))
break;
node = &(*node)->next;
}
}
else
{
hash = key_hash_binary(key, len);
node = &hash_table->nodes[hash % hash_table->size];
//n = 0;
while (*node)
{
node_key = NODE_key(hash_table, *node);
//n++;
if (node_key->len == len && STRING_equal_same(key, node_key->key, len))
break;
node = &(*node)->next;
}
}
//fprintf(stderr, "hash_table_lookup_node %p: %d %d -> %d\n", hash_table, hash_table->size, hash_table->nnodes, n);
return node;
}
void *HASH_TABLE_lookup(HASH_TABLE *hash_table, const char *key, int len, bool set_last)
{
HASH_NODE *node;
if (len == 0)
return NULL;
node = *hash_table_lookup_node(hash_table, key, len);
if (set_last)
hash_table->last = node;
return node ? NODE_value(node) : NULL;
}
void *HASH_TABLE_insert(HASH_TABLE *hash_table, const char *key, int len)
{
HASH_NODE **node;
void *value;
node = hash_table_lookup_node(hash_table, key, len);
if (UNLIKELY(*node != NULL))
return NODE_value(*node);
*node = hash_node_new(hash_table, key, len);
hash_table->nnodes++;
/*if (!hash_table->frozen)*/
value = NODE_value(*node);
hash_table_resize(hash_table);
return value;
}
void HASH_TABLE_remove(HASH_TABLE *hash_table, const char *key, int len)
{
HASH_NODE **node, *dest;
node = hash_table_lookup_node(hash_table, key, len);
if (LIKELY(*node != NULL))
{
dest = *node;
(*node) = dest->next;
#ifdef KEEP_ORDER
if (dest->sprev)
dest->sprev->snext = dest->snext;
else
hash_table->sfirst = dest->snext;
if (dest->snext)
dest->snext->sprev = dest->sprev;
else
hash_table->slast = dest->sprev;
#endif
hash_node_destroy(dest);
hash_table->nnodes--;
hash_table->last = NULL;
/*if (!hash_table->frozen)*/
hash_table_resize(hash_table);
}
}
void *HASH_TABLE_next(HASH_TABLE *hash_table, HASH_ENUM *iter, bool set_last)
{
#ifdef KEEP_ORDER
if (iter->node == NULL)
iter->node = hash_table->sfirst;
else
iter->node = iter->next;
if (set_last)
hash_table->last = iter->node;
if (iter->node)
{
iter->next = iter->node->snext;
return NODE_value(iter->node);
}
else
return NULL;
#else
HASH_NODE *enum_node = iter->node;
int enum_i = iter->index;
if (enum_node)
enum_node = enum_node->next;
while (enum_node == NULL)
{
enum_i++;
if (enum_i >= hash_table->size)
break;
enum_node = hash_table->nodes[enum_i];
};
iter->node = enum_node;
iter->index = enum_i;
if (set_last)
hash_table->last = enum_node;
if (enum_node)
return NODE_value(enum_node);
else
return NULL;
#endif
}
#if 0
static void dump_hash_table(HASH_TABLE *hash_table)
{
int i;
HASH_NODE *node;
HASH_KEY *node_key;
for (i = 0; i < hash_table->size; i++)
{
fprintf(stderr, "%5d: ", i);
for (node = hash_table->nodes[i]; node; node = node->next)
{
node_key = NODE_key(hash_table, node);
fprintf(stderr, "%.*s ", node_key->len, node_key->key);
}
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
#endif
static void hash_table_resize(HASH_TABLE *hash_table)
{
HASH_NODE **old_nodes;
HASH_NODE **new_nodes;
HASH_NODE *node;
HASH_NODE *next;
HASH_KEY *node_key;
int hash_val;
int new_size;
int i;
HASH_FUNC hash_func = get_hash_func(hash_table);
if (!((hash_table->size >= 3 * hash_table->nnodes && hash_table->size > HASH_TABLE_MIN_SIZE) ||
(3 * hash_table->size <= hash_table->nnodes && hash_table->size < HASH_TABLE_MAX_SIZE)))
return;
new_size = MinMax(spaced_primes_closest(hash_table->nnodes), HASH_TABLE_MIN_SIZE, HASH_TABLE_MAX_SIZE);
//fprintf(stderr, "**** hash_table_resize %p %d: %d -> %d\n", hash_table, hash_table->nnodes, hash_table->size, new_size);
//fprintf(stderr, "BEFORE:\n");
//dump_hash_table(hash_table);
old_nodes = hash_table->nodes;
ALLOC_ZERO(&new_nodes, new_size * sizeof(HASH_NODE *));
for (i = 0; i < hash_table->size; i++)
for (node = hash_table->nodes[i]; node; node = next)
{
next = node->next;
node_key = NODE_key(hash_table, node);
hash_val = (*hash_func)(node_key->key, node_key->len) % new_size;
node->next = new_nodes[hash_val];
new_nodes[hash_val] = node;
}
FREE(&old_nodes);
hash_table->nodes = new_nodes;
hash_table->size = new_size;
//fprintf(stderr, "AFTER:\n");
//dump_hash_table(hash_table);
}
static HASH_NODE *hash_node_new(HASH_TABLE *hash_table, const char *key, int len)
{
HASH_NODE *hash_node;
int size;
HASH_KEY *node_key;
if (len > 65535)
len = 65535;
size = sizeof(HASH_NODE) + hash_table->s_value + sizeof(HASH_KEY) + len;
ALLOC_ZERO(&hash_node, size);
node_key = NODE_key(hash_table, hash_node);
memcpy(node_key->key, key, len);
node_key->len = len;
//node_key->hash = hash_table->mode ? key_hash_text(key, len) : key_hash_binary(key, len);
#ifdef KEEP_ORDER
if (UNLIKELY(!hash_table->sfirst))
{
hash_table->sfirst = hash_node;
hash_table->slast = hash_node;
}
else
{
hash_node->sprev = hash_table->slast;
hash_node->sprev->snext = hash_node;
hash_table->slast = hash_node;
}
#endif
return hash_node;
}
static void hash_node_destroy(HASH_NODE *hash_node)
{
FREE(&hash_node);
}
#ifdef KEEP_ORDER
#else
static void hash_nodes_destroy(HASH_NODE *hash_node)
{
HASH_NODE *node = hash_node;
HASH_NODE *next;
for(;;)
{
if (UNLIKELY(node == NULL))
return;
next = node->next;
FREE(&node);
node = next;
}
}
#endif
void HASH_TABLE_get_key(HASH_TABLE *hash_table, HASH_NODE *node, char **key, int *len)
{
HASH_KEY *node_key;
if (LIKELY(node != NULL))
{
node_key = NODE_key(hash_table, node);
*key = node_key->key;
*len = node_key->len;
}
else
*len = 0;
}
bool HASH_TABLE_get_last_key(HASH_TABLE *hash_table, char **key, int *len)
{
if (hash_table->last == NULL)
return TRUE;
HASH_TABLE_get_key(hash_table, hash_table->last, key, len);
return FALSE;
}
void HASH_TABLE_set_last_key(HASH_TABLE *hash_table, char *key, int len)
{
hash_table->last = (len == 0) ? NULL : *hash_table_lookup_node(hash_table, key, len);
}