gambas-source-code/main/gbx/gbx_exec.c
Benoît Minisini dc2d102a95 Move some code outside of 'gbx_exec_loop.c' source file.
[INTERPRETER]
* OPT: Move some code outside of 'gbx_exec_loop.c' source file. Apparently if the result of the compilation of this source file is too big, the interpreter can be about 150% slower.
2022-10-08 22:39:44 +02:00

2047 lines
38 KiB
C

/***************************************************************************
gbx_exec.c
(c) 2000-2017 Benoît Minisini <benoit.minisini@gambas-basic.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.
***************************************************************************/
#define __GBX_EXEC_C
#include "gb_common.h"
#include "gb_error.h"
#include "gbx_type.h"
#include <unistd.h>
#include <sys/time.h>
#include "gb_limit.h"
#include "gbx_subr.h"
#include "gbx_stack.h"
#include "gbx_debug.h"
#include "gbx_event.h"
#include "gbx_string.h"
#include "gbx_date.h"
#include "gbx_c_collection.h"
#include "gbx_api.h"
#include "gbx_jit.h"
#include "gbx_exec.h"
//#define DEBUG_STACK 1
//#define SHOW_FUNCTION 1
STACK_CONTEXT EXEC_current = { 0 }; // Current virtual machine state
VALUE *SP = NULL; // Stack pointer
VALUE TEMP; // Temporary storage or return value of a native function
VALUE RET; // Return value of a gambas function
VALUE *EXEC_super = NULL; // SUPER was used for this stack pointer
bool EXEC_big_endian; // CPU endianness
CENUM *EXEC_enum; // Current iterator
const char *EXEC_profile_path = NULL; // profile file path
const char *EXEC_fifo_name = NULL; // fifo name
EXEC_HOOK EXEC_Hook = { NULL };
EXEC_GLOBAL EXEC;
uint64_t EXEC_byref = 0;
unsigned char EXEC_quit_value = 0; // interpreter return value
bool EXEC_debug = FALSE; // debugging mode
bool EXEC_debug_inside = FALSE; // debug inside components
bool EXEC_debug_hold = FALSE; // hold execution at program end
bool EXEC_task = FALSE; // I am a background task
bool EXEC_profile = FALSE; // profiling mode
bool EXEC_profile_instr = FALSE; // profiling mode at instruction level
bool EXEC_trace = FALSE; // tracing mode
bool EXEC_arch = FALSE; // executing an archive
bool EXEC_fifo = FALSE; // debugging through a fifo
bool EXEC_keep_library = FALSE; // do not unload libraries
bool EXEC_string_add = FALSE; // next '&' operator is done for a '&='
bool EXEC_main_hook_done = FALSE;
bool EXEC_got_error = FALSE;
bool EXEC_break_on_error = FALSE; // if we must break into the debugger as soon as there is an error.
bool EXEC_in_event_loop = FALSE; // if we are in the event loop
const char EXEC_should_borrow[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 1 };
const char *EXEC_unknown_name;
bool EXEC_unknown_property;
char EXEC_unknown_nparam;
void EXEC_init(void)
{
union {
char _string[4];
uint _int;
}
test;
PC = NULL;
BP = NULL;
OP = NULL;
CP = NULL;
RP->type = T_VOID;
test._string[0] = 0xAA;
test._string[1] = 0xBB;
test._string[2] = 0xCC;
test._string[3] = 0xDD;
EXEC_big_endian = test._int == 0xAABBCCDDL;
if (EXEC_big_endian)
ERROR_warning("CPU is big endian");
DATE_init();
EXEC_init_bytecode_check();
}
void EXEC_borrow(TYPE type, VALUE *value)
{
static const void *jump[16] = {
&&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE,
&&__STRING, &&__NONE, &&__NONE, &&__VARIANT, &&__FUNCTION, &&__NONE, &&__NONE
};
goto *jump[type];
__VARIANT:
if (value->_variant.vtype == T_STRING)
STRING_ref(value->_variant.value._string);
else if (TYPE_is_object(value->_variant.vtype))
OBJECT_REF_CHECK(value->_variant.value._object);
return;
__FUNCTION:
OBJECT_REF_CHECK(value->_function.object);
return;
__STRING:
STRING_ref(value->_string.addr);
__NONE:
return;
}
void EXEC_unborrow(VALUE *value)
{
static const void *jump[16] = {
&&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE,
&&__STRING, &&__NONE, &&__NONE, &&__VARIANT, &&__FUNCTION, &&__NONE, &&__NONE
};
TYPE type = value->type;
if (TYPE_is_object(type))
{
OBJECT_UNREF_KEEP(value->_object.object);
return;
}
goto *jump[type];
__VARIANT:
if (value->_variant.vtype == T_STRING)
STRING_unref_keep(&value->_variant.value._string);
else if (TYPE_is_object(value->_variant.vtype))
OBJECT_UNREF_KEEP(value->_variant.value._object);
return;
__FUNCTION:
OBJECT_UNREF_KEEP(value->_function.object);
return;
__STRING:
STRING_unref_keep(&value->_string.addr);
__NONE:
return;
}
void EXEC_release(TYPE type, VALUE *value)
{
static const void *jump[16] = {
&&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE,
&&__STRING, &&__NONE, &&__NONE, &&__VARIANT, &&__FUNCTION, &&__NONE, &&__NONE
};
goto *jump[type];
__VARIANT:
if (value->_variant.vtype == T_STRING)
STRING_unref(&value->_variant.value._string);
else if (TYPE_is_object(value->_variant.vtype))
OBJECT_UNREF(value->_variant.value._object);
return;
__FUNCTION:
OBJECT_UNREF(value->_function.object);
return;
__STRING:
STRING_unref(&value->_string.addr);
__NONE:
return;
}
void RELEASE_many(VALUE *value, int n)
{
static const void *jump[16] = {
&&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE,
&&__STRING, &&__NONE, &&__NONE, &&__VARIANT, &&__FUNCTION, &&__NONE, &&__NONE
};
TYPE type;
while (n)
{
n--;
value--;
type = value->type;
if (TYPE_is_object(type))
{
OBJECT_UNREF(value->_object.object);
continue;
}
goto *jump[type];
__VARIANT:
if (value->_variant.vtype == T_STRING)
STRING_unref(&value->_variant.value._string);
else if (TYPE_is_object(value->_variant.vtype))
OBJECT_UNREF(value->_variant.value._object);
continue;
__FUNCTION:
OBJECT_UNREF(value->_function.object);
continue;
__STRING:
STRING_unref(&value->_string.addr);
__NONE:
continue;
}
}
#if 0
void DUMP(VALUE *value)
{
static void *jump[16] = {
&&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE, &&__NONE,
&&__STRING, &&__NONE, &&__VARIANT, &&__ARRAY, &&__NONE, &&__FUNCTION, &&__NONE, &&__NONE
};
TYPE type = value->type;
printf("type = %p / ", (void *)type);
if (TYPE_is_object(type))
goto __OBJECT;
else
goto *jump[type];
__STRING:
printf("STRING %p\n", value->_string.addr);
return;
__OBJECT:
if (value->_object.object)
{
printf("OBJECT (%p)\n", value->_object.object);
printf("-> %s\n", OBJECT_class(value->_object.object)->name);
}
else
printf("OBJECT (NULL)\n");
return;
__VARIANT:
if (value->_variant.vtype == T_STRING)
printf("STRING %p\n", *((char **)value->_variant.value));
else if (TYPE_is_object(value->_variant.vtype))
printf("OBJECT (%s %p)\n", OBJECT_class(*((void **)value->_variant.value))->name, *((void **)value->_variant.value));
return;
__FUNCTION:
printf("FUNCTION %s (%s %p)\n", value->_function.class->name, OBJECT_class(value->_function.object)->name, value->_function.object);
return;
__ARRAY:
printf("ARRAY\n");
return;
__NONE:
printf("\n");
return;
}
#endif
void EXEC_release_return_value(void)
{
RELEASE(RP);
RP->type = T_VOID;
}
#define print_register() \
fprintf(stderr, "| SP = %d BP = %d FP = %p PC = %p EC = %p\n", (int)(SP - (VALUE *)STACK_base), (int)(BP - (VALUE *)STACK_base), FP, PC, EC)
static ushort exec_enter_can_quick(void)
{
int i;
FUNCTION *func;
int nparam = EXEC.nparam;
func = &EXEC.class->load->func[EXEC.index];
/* check number of arguments */
if (func->npmin < func->n_param || nparam != func->n_param || func->vararg)
return C_CALL_SLOW;
/* check arguments type */
for (i = 0; i < nparam; i++)
{
if (SP[i - nparam].type != func->param[i].type)
return C_CALL_SLOW;
}
return C_CALL_QUICK;
}
static void init_local_var(CLASS *class, FUNCTION *func)
{
static const void *jump[] = {
&&__VOID, &&__BOOLEAN, &&__BYTE, &&__SHORT, &&__INTEGER, &&__LONG, &&__SINGLE, &&__FLOAT,
&&__DATE, &&__STRING, &&__STRING, &&__POINTER, &&__VARIANT, &&__FUNCTION, &&__CLASS, &&__NULL,
&&__OBJECT
};
CLASS_LOCAL *local;
int n;
CTYPE ctype;
VALUE *value;
local = func->local;
value = SP;
for (n = func->n_local; n; n--, value++, local++)
{
ctype = local->type;
value->type = ctype.id;
goto *jump[ctype.id];
__BOOLEAN:
__BYTE:
__SHORT:
__INTEGER:
value->_integer.value = 0;
continue;
__LONG:
value->_long.value = 0;
continue;
__SINGLE:
value->_single.value = 0;
continue;
__FLOAT:
value->_float.value = 0;
continue;
__STRING:
value->_string.addr = NULL;
value->_string.start = 0;
value->_string.len = 0;
continue;
__VARIANT:
value->_variant.vtype = T_NULL;
continue;
__POINTER:
value->_pointer.value = NULL;
continue;
__DATE:
value->_date.date = 0;
value->_date.time = 0;
continue;
__VOID:
continue;
__OBJECT:
if (ctype.value >= 0)
value->type = (TYPE)class->load->class_ref[ctype.value];
value->_object.object = NULL;
continue;
__FUNCTION:
__CLASS:
__NULL:
ERROR_panic("VALUE_default: Unknown default type");
}
SP = value;
}
// EXEC.nparam must be set to the amount of stack that must be freed if an exception is raised during EXEC_enter()
void EXEC_enter(void)
{
int i;
FUNCTION *func; // = EXEC.func;
bool optional;
int nparam = EXEC.nparam;
void *object = EXEC.object;
CLASS *class = EXEC.class;
int64_t optargs;
#if DEBUG_STACK
fprintf(stderr, "\n| >> EXEC_enter(%s, %d, %d)\n", EXEC.class->name, EXEC.index, nparam);
print_register();
#endif
func = &class->load->func[EXEC.index];
#if DEBUG_STACK
if (func->debug)
fprintf(stderr, " | >> %s\n", func->debug->name);
#endif
#if SHOW_FUNCTION
if (func->debug)
fprintf(stderr, "%s.%s\n", EXEC.class->name, func->debug->name);
#endif
optional = func->optional;
// Check number of arguments
if (nparam < func->npmin)
THROW(E_NEPARAM);
else if (nparam > func->n_param && !func->vararg)
THROW(E_TMPARAM);
// Mandatory arguments
for (i = 0; i < func->npmin; i++)
VALUE_conv(SP - nparam + i, func->param[i].type);
if (optional)
{
optargs = 0;
// Optional arguments
for (i = func->npmin; i < Min(func->n_param, nparam); i++)
{
if (SP[- nparam + i].type == T_VOID)
{
optargs |= (1 << i);
SP[- nparam + i]._void.ptype = func->param[i].type;
}
else
VALUE_conv(SP - nparam + i, func->param[i].type);
}
// Missing optional arguments
if (nparam < func->n_param)
{
STACK_check(func->n_param - nparam);
for (i = nparam; i < func->n_param; i++)
{
optargs |= (1 << i);
SP->type = T_VOID;
SP->_void.ptype = func->param[i].type;
SP++;
}
//EXEC.nparam = func->n_param;
nparam = func->n_param;
}
}
// Save context & check stack
STACK_push_frame(&EXEC_current, func->stack_usage);
// Enter function
BP = SP;
if (func->vararg)
PP = SP - (nparam - func->n_param);
else
PP = SP;
FP = func;
PC = func->code;
OP = object;
CP = class;
EXEC_check_bytecode();
EP = NULL;
GP = NULL;
PROFILE_ENTER_FUNCTION();
if (func->error)
{
#if DEBUG_ERROR
printf("EXEC_enter: EC = PC + %d\n", func->error);
#endif
EC = PC + func->error;
}
else
EC = NULL;
// Reference the object so that it is not destroyed during the function call
OBJECT_REF_CHECK(OP);
// Local variables initialization
if (func->n_local > 0)
init_local_var(class, func);
// Control variables initialization
if (func->n_ctrl > 0)
{
for (i = 0; i < func->n_ctrl; i++)
{
SP->type = T_VOID;
SP++;
}
// Optional argument map
if (optional && func->use_is_missing)
{
SP--;
SP->type = T_LONG;
SP->_long.value = optargs;
SP++;
}
}
RP->type = T_VOID;
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_enter()\n");
print_register();
#endif
}
void EXEC_enter_check(bool defined)
{
ushort mode = defined ? exec_enter_can_quick() : C_CALL_SLOW;
*PC = (*PC & 0xFF) | mode;
switch(mode)
{
case C_CALL_QUICK: EXEC_enter_quick(); break;
//case C_CALL_EASY: EXEC_enter_easy(); break;
default: EXEC_enter(); break;
}
}
void EXEC_enter_quick(void)
{
int i;
FUNCTION *func;;
void *object = EXEC.object;
CLASS *class = EXEC.class;
#if DEBUG_STACK
fprintf(stderr, "\n| >> EXEC_enter_quick(%s, %d, %d)\n", EXEC.class->name, EXEC.index, EXEC.nparam);
print_register();
#endif
func = &class->load->func[EXEC.index];
#if DEBUG_STACK
if (func->debug)
fprintf(stderr, " | >> %s\n", func->debug->name);
#endif
#if SHOW_FUNCTION
if (func->debug)
fprintf(stderr, "%s.%s\n", EXEC.class->name, func->debug->name);
#endif
/* save context & check stack */
STACK_push_frame(&EXEC_current, func->stack_usage);
/* enter function */
BP = SP;
PP = SP;
FP = func;
PC = func->code;
OP = object;
CP = class;
EXEC_check_bytecode();
EP = NULL;
GP = NULL;
if (func->error)
EC = PC + func->error;
else
EC = NULL;
PROFILE_ENTER_FUNCTION();
/* reference the object so that it is not destroyed during the function call */
OBJECT_REF_CHECK(OP);
/* local variables initialization */
if (func->n_local != 0)
init_local_var(class, func);
/* control variables initialization */
if (func->n_ctrl != 0)
{
for (i = 0; i < func->n_ctrl; i++)
{
SP->type = T_VOID;
SP++;
}
}
RP->type = T_VOID;
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_enter()\n");
print_register();
#endif
}
static int exec_leave_byref(ushort *pc, int nparam)
{
int nbyref;
ushort *pc_func;
int nbyref_func;
VALUE *xp, *pp;
int i, n, bit;
int nb;
pc++;
nbyref = 1 + (*pc & 0xF);
pc_func = FP->code;
if (!PCODE_is(*pc_func, C_BYREF))
return 0;
nbyref_func = 1 + (*pc_func & 0xF);
if (nbyref_func < nbyref)
return 0;
for (i = 1; i <= nbyref; i++)
{
if (pc[i] & ~pc_func[i])
return 0;
}
xp = PP - nparam;
pp = xp;
for (i = 0, n = 0, nb = 0; i < nparam; i++)
{
bit = i & 15;
if (bit == 0)
n++;
if (n <= nbyref && (pc[n] & (1 << bit)))
{
xp[nb] = *pp;
nb++;
}
else
{
RELEASE(pp);
}
pp++;
}
pc--;
n = SP - PP;
RELEASE_MANY(SP, n);
SP -= nparam;
SP += nb;
OBJECT_UNREF(OP);
SP -= nb;
PROFILE_LEAVE_FUNCTION();
STACK_pop_frame(&EXEC_current);
PC += nbyref + 1;
return nb;
}
#if 0
#define EXEC_LEAVE_BYREF() \
pc++; \
nbyref = 1 + (*pc & 0xF); \
pc_func = FP->code; \
\
if (!PCODE_is(*pc_func, C_BYREF)) \
goto __LEAVE_NORMAL; \
\
nbyref_func = 1 + (*pc_func & 0xF); \
if (nbyref_func < nbyref) \
goto __LEAVE_NORMAL; \
\
for (i = 1; i <= nbyref; i++) \
{ \
if (pc[i] & ~pc_func[i]) \
goto __LEAVE_NORMAL; \
} \
\
xp = PP - nparam; \
pp = xp; \
\
for (i = 0, n = 0; i < nparam; i++) \
{ \
bit = i & 15; \
if (bit == 0) \
n++; \
\
if (n <= nbyref && (pc[n] & (1 << bit))) \
{ \
xp[nb] = *pp; \
nb++; \
} \
else \
{ \
RELEASE(pp); \
} \
pp++; \
} \
\
pc--; \
n = SP - PP; \
RELEASE_MANY(SP, n); \
SP -= nparam; \
SP += nb; \
OBJECT_UNREF(OP); \
SP -= nb; \
PROFILE_LEAVE_FUNCTION(); \
STACK_pop_frame(&EXEC_current); \
PC += nbyref + 1; \
goto __RETURN_VALUE;
#endif
void EXEC_leave_drop()
{
int nparam;
//VALUE ret;
ushort *pc;
int n, nb;
#if DEBUG_STACK
fprintf(stderr, "| >> EXEC_leave\n");
print_register();
#endif
/* Save the return value. It can be erased by OBJECT_UNREF() */
//ret = *RP;
EXEC_release_return_value();
//VALUE_copy(&ret, RP);
pc = STACK_get_previous_pc();
nparam = FP->n_param;
/* ByRef arguments management */
nb = (pc && PCODE_is(pc[1], C_BYREF)) ? exec_leave_byref(pc, nparam) : 0;
if (nb == 0)
{
n = nparam + (SP - PP);
RELEASE_MANY(SP, n);
OBJECT_UNREF(OP);
PROFILE_LEAVE_FUNCTION();
STACK_pop_frame(&EXEC_current);
}
SP += nb;
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_leave()\n");
print_register();
fprintf(stderr, "\n");
#endif
return;
}
void EXEC_leave_keep()
{
VALUE ret;
int nparam;
ushort *pc;
int n, nb;
#if DEBUG_STACK
fprintf(stderr, "| >> EXEC_leave\n");
print_register();
#endif
// RP may be indirectly freed by OBJECT_UNREF()
VALUE_copy(&ret, RP);
pc = STACK_get_previous_pc();
nparam = FP->n_param;
// ByRef arguments management
nb = (pc && PCODE_is(pc[1], C_BYREF)) ? exec_leave_byref(pc, nparam) : 0;
if (nb == 0)
{
n = nparam + (SP - PP);
RELEASE_MANY(SP, n);
OBJECT_UNREF(OP);
PROFILE_LEAVE_FUNCTION();
STACK_pop_frame(&EXEC_current);
}
if (pc)
{
if (SP[-1].type == T_FUNCTION)
{
SP--;
OBJECT_UNREF(SP->_function.object);
}
COPY_VALUE(SP, &ret);
RP->type = T_VOID;
if (PCODE_is_variant(*PC) && SP->type != T_VOID)
VALUE_conv_variant(SP);
SP++;
}
else
{
VALUE_copy(RP, &ret);
}
SP += nb;
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_leave()\n");
print_register();
fprintf(stderr, "\n");
#endif
return;
}
static void error_EXEC_function_real(void)
{
RELEASE_MANY(SP, EXEC.nparam);
STACK_pop_frame(&EXEC_current);
}
void EXEC_function_real()
{
EXEC.func = &EXEC.class->load->func[EXEC.index];
if (EXEC.func->fast && !JIT_exec(FALSE))
return;
// We need to push a void frame, because EXEC_leave looks at *PC to know if a return value is expected
STACK_push_frame(&EXEC_current, 0);
PC = NULL;
GP = NULL;
ON_ERROR(error_EXEC_function_real)
{
EXEC_enter();
}
END_ERROR
EXEC_function_loop();
}
void EXEC_function_loop()
{
bool retry = FALSE;
if (PC != NULL)
{
do
{
TRY
{
EXEC_loop();
retry = FALSE;
}
CATCH
{
// QUIT was called
if (ERROR->info.code == E_ABORT)
{
#if DEBUG_ERROR
fprintf(stderr, "#0 QUIT\n");
#endif
ERROR_lock();
while (PC != NULL)
EXEC_leave_drop();
ERROR_unlock();
//STACK_pop_frame(&EXEC_current);
PROPAGATE();
}
if (EXEC_break_on_error && EXEC_debug)
DEBUG.Main(TRUE);
if (ERROR->info.code == E_ASSERT)
{
EP = NULL;
EC = NULL;
goto __IGNORE_TRY_CATCH;
}
// Are we in a TRY?
if (EP && EC)
{
#if DEBUG_ERROR
fprintf(stderr, "#1 EP = %d SP = %d\n", EP - (VALUE *)STACK_base, SP - (VALUE *)STACK_base);
fprintf(stderr, "TRY\n");
#endif
ERROR_set_last(FALSE);
// No need to unwind the Gosub stack until the TRY stack position, because TRY GOSUB is forbidden
/*while (GP > EP)
{
...
}*/
// The stack is popped until reaching the stack position before the TRY
while (SP > EP)
POP();
// We go directly to the END TRY
PC = EC;
EP = NULL;
retry = TRUE;
goto __CONTINUE;
}
// Is there a CATCH in the function?
if (EC != NULL)
{
#if DEBUG_ERROR
fprintf(stderr, "#2 EC = %p\n", EC);
fprintf(stderr, "CATCH\n");
#endif
ERROR_set_last(TRUE);
// The stack is popped until reaching the stack position at the function start
while (SP > (BP + FP->n_local + FP->n_ctrl))
POP();
// Reset the Gosub stack pointer as all Gosub control variables saved have been released
GP = NULL;
PC = EC;
EC = NULL;
retry = TRUE;
goto __CONTINUE;
}
__IGNORE_TRY_CATCH:
// There is no error handler in the function
#if DEBUG_ERROR
fprintf(stderr, "#3\n");
fprintf(stderr, "NOTHING\n");
#endif
//ERROR_INFO save = { 0 };
//ERROR_save(&save);
ERROR_set_last(TRUE);
if (EXEC_debug && !FP->fast_linked && !STACK_has_error_handler())
{
ERROR_hook();
for(;;)
DEBUG.Main(TRUE);
}
else
{
// We leave stack frames until we find either:
// - A stack frame that has an error handler.
// - A void stack frame created by EXEC_enter_real()
// First we leave stack frames for JIT functions
// on top of the stack. We have just propagated
// past these some lines below.
/*ERROR_lock();
while (PC != NULL && EC == NULL && FP->fast)
EXEC_leave_drop();
ERROR_unlock();*/
// We can only leave stack frames for non-JIT functions.
ERROR_lock();
while (PC != NULL && EC == NULL && !FP->fast_linked)
EXEC_leave_drop();
ERROR_unlock();
if (FP && FP->fast_linked)
PROPAGATE();
// If we got the void stack frame, then we remove it and raise the error again
if (PC == NULL)
{
STACK_pop_frame(&EXEC_current);
PROPAGATE();
}
// We have a TRY too, handle it.
if (EP != NULL)
{
#if DEBUG_ERROR
fprintf(stderr, "#4 EP = %d SP = %d\n", EP - (VALUE *)STACK_base, SP - (VALUE *)STACK_base);
#endif
ERROR_lock();
while (SP > EP)
POP();
ERROR_unlock();
EP = NULL;
/* On va directement sur le END TRY */
}
// Now we can handle the CATCH
// The stack is popped until reaching the stack position at the function start
ERROR_lock();
#if DEBUG_ERROR
DEBUG_where();
fprintf(stderr, "#5 BP + local + ctrl = %d SP = %d\n", BP + FP->n_local + FP->n_ctrl - (VALUE *)STACK_base, SP - (VALUE *)STACK_base);
#endif
while (SP > (BP + FP->n_local + FP->n_ctrl))
POP();
ERROR_unlock();
PC = EC;
EC = NULL;
retry = TRUE;
}
//ERROR_restore(&save);
//ERROR_set_last();
__CONTINUE:
while (SP < EXEC_super)
EXEC_super = ((VALUE *)EXEC_super)->_object.super;
}
END_TRY
#if DEBUG_ERROR
if (retry)
fprintf(stderr, "RETRY %p\n", PC);
#endif
}
while (retry);
}
if (PC == NULL)
STACK_pop_frame(&EXEC_current);
}
static ushort exec_native_can_quick(void)
{
CLASS_DESC_METHOD *desc = EXEC.desc;
int i;
int nparam = EXEC.nparam;
/* check number of arguments */
//fprintf(stderr, "exec_native_can_quick: %s.%s(%d) npmin:%d npmax:%d npvar:%d\n", desc->class->name, desc->name, nparam, desc->npmin, desc->npmax, desc->npvar);
if (desc->npmin < desc->npmax || nparam != desc->npmin || desc->npvar)
return C_CALL_SLOW;
/* check arguments type */
for (i = 0; i < nparam; i++)
{
if (SP[i - nparam].type != desc->signature[i])
return C_CALL_SLOW;
}
return C_CALL_QUICK;
}
void EXEC_native_check(bool defined)
{
ushort mode = defined ? exec_native_can_quick() : C_CALL_SLOW;
*PC = (*PC & 0xFF) | mode;
switch(mode)
{
case C_CALL_QUICK: EXEC_native_quick(); break;
//case C_CALL_EASY: EXEC_native_easy(); break;
default: EXEC_native(); break;
}
}
#define EXEC_call_native_inline(_exec, _object, _type, _param) \
({ \
EXEC_set_native_error(FALSE); \
(*(_exec))((_object), (void *)(_param)); \
\
if (EXEC_has_native_error()) \
{ \
EXEC_set_native_error(FALSE); \
error = TRUE; \
} \
else \
{ \
TYPE __type = (_type); \
if (TYPE_is_pure_object(__type) && TEMP.type != T_NULL && TEMP.type != T_VOID) \
{ \
if (TEMP.type == T_CLASS) \
TEMP._class.class = (CLASS *)__type; \
else \
TEMP.type = __type; \
\
error = FALSE; \
} \
else \
error = FALSE; \
} \
})
bool EXEC_call_native(void (*exec)(), void *object, TYPE type, VALUE *param)
{
bool error;
EXEC_call_native_inline(exec, object, type, param);
return error;
}
void EXEC_native_quick(void)
{
CLASS_DESC_METHOD *desc = EXEC.desc;
int nparam = EXEC.nparam;
bool error;
//void *free_later;
VALUE ret;
EXEC_call_native_inline(desc->exec, EXEC.object, desc->type, &SP[-nparam]);
COPY_VALUE(&ret, &TEMP);
if (error)
{
RELEASE_MANY(SP, nparam);
POP();
PROPAGATE();
}
if (desc->type == T_VOID)
{
RELEASE_MANY(SP, nparam);
SP--;
OBJECT_UNREF(SP->_function.object);
SP->type = T_VOID;
SP->_void.ptype = T_NULL;
SP++;
}
else
{
BORROW(&ret);
RELEASE_MANY(SP, nparam);
SP--;
OBJECT_UNREF(SP->_function.object);
COPY_VALUE(SP, &ret);
SP++;
}
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_native: %s (%p)\n", desc->name, &desc);
#endif
}
static void error_EXEC_native(intptr_t nparam)
{
RELEASE_MANY(SP, (int)nparam);
}
void EXEC_native(void)
{
CLASS_DESC_METHOD *desc = EXEC.desc;
int nparam = EXEC.nparam;
void *object = EXEC.object;
bool use_stack = EXEC.use_stack;
int i, n, nm;
VALUE *value;
TYPE *sign;
bool error;
VALUE ret;
#if DEBUG_STACK
fprintf(stderr, "| >> EXEC_native: %s.%s (%p)\n", EXEC.class->name, desc->name, &desc);
#endif
ON_ERROR_1(error_EXEC_native, nparam)
{
n = desc->npmin;
nm = desc->npmax;
if (nparam < n)
THROW(E_NEPARAM);
if (!desc->npvar)
{
if (nparam > nm)
THROW(E_TMPARAM);
value = &SP[-nparam];
sign = desc->signature;
for (i = 0; i < n; i++, value++, sign++)
VALUE_conv(value, *sign);
if (n < nm)
{
for (; i < nparam; i++, value++, sign++)
{
if (value->type != T_VOID)
VALUE_conv(value, *sign);
}
n = nm - nparam;
/*if (STACK_check(n))
{
STACK_RELOCATE(value);
}*/
SP += n;
nparam = nm;
for (; i < nparam; i++, value++)
value->type = T_VOID;
}
}
else
{
value = &SP[-nparam];
sign = desc->signature;
for (i = 0; i < n; i++, value++, sign++)
VALUE_conv(value, *sign);
nm = desc->npmax;
if (n < nm)
{
if (nparam < nm)
{
for (; i < nparam; i++, value++, sign++)
{
if (value->type != T_VOID)
VALUE_conv(value, *sign);
}
n = nm - nparam;
/*if (STACK_check(n))
{
STACK_RELOCATE(value);
}*/
SP += n;
nparam = nm;
for (; i < nparam; i++, value++)
value->type = T_VOID;
}
else
{
n = desc->npmax;
for (; i < n; i++, value++, sign++)
{
if (value->type != T_VOID)
VALUE_conv(value, *sign);
}
}
}
EXEC_unknown_nparam = nparam <= nm ? 0 : nparam - nm;
for (; i < nparam; i++, value++)
VARIANT_undo(value);
//printf("EXEC_native: nparvar = %d\n", EXEC.nparvar);
}
}
END_ERROR
EXEC_call_native_inline(desc->exec, object, desc->type, &SP[-nparam]);
COPY_VALUE(&ret, &TEMP);
if (error)
{
RELEASE_MANY(SP, nparam);
if (use_stack)
{
SP--;
OBJECT_UNREF(SP->_function.object);
}
PROPAGATE();
}
// If the function description is on the stack
if (desc->type == T_VOID)
{
RELEASE_MANY(SP, nparam);
if (use_stack)
{
SP--;
OBJECT_UNREF(SP->_function.object);
}
SP->type = T_VOID;
SP->_void.ptype = T_NULL;
SP++;
//UNBORROW(&ret);
}
else
{
BORROW(&ret);
RELEASE_MANY(SP, nparam);
if (use_stack)
{
SP--;
OBJECT_UNREF(SP->_function.object);
if (PCODE_is_variant(*PC) && ret.type != T_VOID)
VALUE_conv_variant(&ret);
}
COPY_VALUE(SP, &ret);
SP++;
}
#if DEBUG_STACK
fprintf(stderr, "| << EXEC_native: %s (%p)\n", desc->name, &desc);
#endif
}
CLASS *EXEC_object_real(VALUE *val)
{
CLASS *class;
OBJECT *object;
object = val->_object.object;
class = val->_object.class;
if (!object)
{
/* A null object and a virtual class means that we want to pass a static class */
if (!class->is_virtual)
THROW_NULL();
CLASS_load(class);
goto __RETURN;
}
if (val == EXEC_super)
EXEC_super = val->_object.super;
else if (!class->is_virtual)
class = object->class;
//CLASS_load(class); If we have an object, the class is necessarily loaded.
if (class->must_check && (*(class->check))(object))
THROW(E_IOBJECT);
__RETURN:
return class;
}
CLASS *EXEC_object_variant(VALUE *val, OBJECT **pobject)
{
CLASS *class;
OBJECT *object;
if (TYPE_is_pure_object(val->_variant.vtype))
{
object = val->_variant.value._object;
if (!object)
goto __NULL;
class = (CLASS *)val->_variant.vtype;
if (!class->is_virtual)
class = object->class; /* Virtual dispatching */
goto __CHECK;
}
else if (val->_variant.vtype == T_OBJECT)
{
object = val->_variant.value._object;
if (!object)
goto __NULL;
class = object->class;
goto __CHECK;
}
else if (val->_variant.vtype == T_STRING || val->_variant.vtype == T_CSTRING)
{
*pobject = NULL;
return CLASS_BoxedString;
}
else
goto __ERROR;
__ERROR:
THROW(E_NOBJECT);
__NULL:
THROW_NULL();
__CHECK:
//CLASS_load(class); //If we have an object, the class is not necessarily loaded?
if (class->must_check && (*(class->check))(object))
THROW(E_IOBJECT);
*pobject = object;
return class;
}
bool EXEC_object_other(VALUE *val, CLASS **pclass, OBJECT **pobject)
{
static const void *jump[] = {
&&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR, &&__ERROR,
&&__STRING, &&__CSTRING, &&__ERROR, &&__ERROR, &&__FUNCTION, &&__CLASS, &&__NULL,
&&__OBJECT,
};
CLASS *class;
OBJECT *object;
bool defined;
goto *jump[val->type];
__FUNCTION:
if (val->_function.kind == FUNCTION_UNKNOWN)
{
EXEC_unknown_property = TRUE;
EXEC_unknown_name = CP->load->unknown[val->_function.index];
EXEC_special(SPEC_UNKNOWN, val->_function.class, val->_function.object, 0, FALSE);
object = val->_function.object;
OBJECT_UNREF(object);
SP--;
//*val = *SP;
COPY_VALUE(val, SP);
EXEC_object(val, pclass, pobject);
return FALSE; // Could be TRUE, but always returning FALSE allows optimizations in quick array management
}
else
goto __ERROR;
__CLASS:
class = val->_class.class;
object = NULL;
defined = TRUE;
if (val == EXEC_super)
{
EXEC_super = val->_class.super;
//*class = (*class)->parent;
if (class == NULL)
THROW(E_PARENT);
}
CLASS_load(class);
goto __RETURN;
__OBJECT:
object = val->_object.object;
if (!object)
goto __NULL;
class = object->class;
defined = FALSE;
goto __CHECK;
__STRING:
__CSTRING:
*pclass = CLASS_BoxedString;
*pobject = NULL;
return TRUE;
__ERROR:
THROW(E_NOBJECT);
__NULL:
THROW_NULL();
__CHECK:
//CLASS_load(class); If we have an object, the class is necessarily loaded.
if (class->must_check && (*(class->check))(object))
THROW(E_IOBJECT);
__RETURN:
*pclass = class;
*pobject = object;
return defined;
}
void EXEC_public_desc(CLASS *class, void *object, CLASS_DESC_METHOD *desc, int nparam)
{
EXEC.object = object;
EXEC.nparam = nparam; /*desc->npmin;*/
if (FUNCTION_is_native(desc))
{
EXEC.class = class; // EXEC_native() does not need the real class, except the GB.GetClass(NULL) API used by Form.Main.
EXEC.native = TRUE;
EXEC.use_stack = FALSE;
EXEC.desc = desc;
EXEC_native();
SP--;
*RP = *SP;
SP->type = T_VOID;
}
else
{
EXEC.class = desc->class; // EXEC_function_real() needs the effective class, because the method can be an inherited one!
EXEC.native = FALSE;
EXEC.index = (int)(intptr_t)desc->exec;
EXEC_function_keep();
}
}
void EXEC_public(CLASS *class, void *object, const char *name, int nparam)
{
CLASS_DESC *desc;
desc = CLASS_get_symbol_desc_kind(class, name, (object != NULL) ? CD_METHOD : CD_STATIC_METHOD, 0, T_VOID);
if (desc == NULL)
return;
EXEC_public_desc(class, object, &desc->method, nparam);
EXEC_release_return_value();
}
bool EXEC_special(int special, CLASS *class, void *object, int nparam, bool drop)
{
CLASS_DESC *desc;
short index = class->special[special];
if (index == NO_SYMBOL)
return TRUE;
desc = CLASS_get_desc(class, index);
if (CLASS_DESC_get_type(desc) == CD_STATIC_METHOD)
{
if (object != NULL)
return TRUE;
}
else
{
if (object == NULL)
{
if (class->auto_create)
object = EXEC_auto_create(class, FALSE);
if (object == NULL)
THROW(E_NOBJECT);
}
}
EXEC.class = desc->method.class;
EXEC.object = object;
EXEC.nparam = nparam;
/*printf("<< EXEC_spec: SP = %d\n", SP - (VALUE *)STACK_base);
save_SP = SP;*/
if (FUNCTION_is_native(&desc->method))
{
if (desc->method.subr)
{
((EXEC_FUNC_CODE_SP)(EXEC.class->table[index].desc->method.exec))(nparam, SP);
}
else
{
EXEC.desc = &desc->method;
EXEC.use_stack = FALSE;
EXEC.native = TRUE;
EXEC_native();
}
if (drop)
POP();
}
else
{
//EXEC.func = &class->load->func[(long)desc->method.exec]
EXEC.index = (int)(intptr_t)desc->method.exec;
EXEC.native = FALSE;
if (drop)
EXEC_function();
else
{
EXEC_function_keep();
//*SP++ = *RP;
COPY_VALUE(SP, RP);
SP++;
RP->type = T_VOID;
}
}
/*printf(">> EXEC_spec: SP = %d\n", SP - (VALUE *)STACK_base);
if (SP != save_SP)
printf("**** SP should be %d\n", save_SP - (VALUE *)STACK_base);*/
return FALSE;
}
/*
The highest parent method is called first, but get only the parameters
not consumed by the child methods.
*/
void EXEC_special_inheritance(int special, CLASS *class, OBJECT *object, int nparam, bool drop)
{
CLASS *her[MAX_INHERITANCE];
int nher;
int i, np, npopt, nparam_opt, save_nparam;
CLASS_DESC *desc;
short index;
int arg, opt;
VALUE *base;
if (!class->parent)
{
if (special == SPEC_NEW && class->init_dynamic)
{
EXEC.class = class;
EXEC.object = object;
EXEC.index = FUNC_INIT_DYNAMIC;
EXEC.native = FALSE;
EXEC.nparam = 0;
EXEC_function();
}
if (EXEC_special(special, class, object, nparam, drop))
{
if (nparam)
THROW(E_TMPARAM);
}
return;
}
nher = CLASS_get_inheritance(class, her);
for(i = 0, np = 0; i < nher; i++)
{
class = her[i];
index = class->special[special];
if (index == NO_SYMBOL)
continue;
desc = CLASS_get_desc(class, index); //class->special[special];
np += desc->method.npmin;
}
if (np > nparam)
THROW(E_NEPARAM);
save_nparam = nparam;
arg = - nparam;
opt = arg + np;
nparam_opt = nparam - np;
nparam = np;
// nparam is now the number of mandatory arguments
// naram_opt is the number of optional arguments
for(;;)
{
nher--;
if (nher < 0)
break;
class = her[nher];
if (special == SPEC_NEW)
{
if (class->init_dynamic)
{
EXEC.class = class;
EXEC.object = object;
EXEC.index = FUNC_INIT_DYNAMIC;
//EXEC.func = &class->load->func[FUNC_INIT_DYNAMIC];
EXEC.native = FALSE;
EXEC.nparam = 0;
EXEC_function();
}
}
index = class->special[special];
if (index == NO_SYMBOL)
continue;
desc = CLASS_get_desc(class, index); // class->special[special];
if (nher)
{
np = desc->method.npmin;
if (np > nparam) np = nparam;
nparam -= np;
npopt = desc->method.npmax - desc->method.npmin;
if (npopt > nparam_opt) npopt = nparam_opt;
nparam_opt -= npopt;
}
else
{
np = nparam;
npopt = nparam_opt;
}
if (np > 0 || npopt > 0)
{
STACK_check(np + npopt);
base = SP;
for (i = 0; i < np; i++)
{
*SP++ = base[arg];
base[arg].type = T_NULL;
arg++;
}
for (i = 0; i < npopt; i++)
{
*SP++ = base[opt];
base[opt].type = T_NULL;
opt++;
}
}
EXEC_special(special, class, object, np + npopt, drop);
}
SP -= save_nparam;
}
void *EXEC_create_object(CLASS *class, int np, char *event)
{
void *object;
CLASS_load(class);
if (class->no_create)
THROW(E_CSTATIC, CLASS_get_name(class));
object = OBJECT_new(class, event, ((OP == NULL) ? (OBJECT *)CP : (OBJECT *)OP));
TRY
{
OBJECT_lock(object, TRUE);
EXEC_special_inheritance(SPEC_NEW, class, object, np, TRUE);
OBJECT_lock(object, FALSE);
EXEC_special(SPEC_READY, class, object, 0, TRUE);
}
CATCH
{
// _free() methods should not be called, but we must
OBJECT_UNREF(object);
PROPAGATE();
}
END_TRY
return object;
}
void EXEC_new(ushort code)
{
CLASS *class;
int np;
bool event;
void *object;
char *name = NULL;
char *cname = NULL;
char *save;
np = code & 0xFF;
event = np & CODE_NEW_EVENT;
np &= 0x3F;
/* Instanciation */
SP -= np;
if (SP->type == T_CLASS)
{
class = SP->_class.class;
//if (class->override != NULL)
// class = class->override;
}
else if (TYPE_is_string(SP->type))
{
cname = STRING_copy_from_value_temp(SP);
class = CLASS_find(cname);
RELEASE_STRING(SP);
SP->type = T_NULL;
}
else
THROW_TYPE(T_STRING, SP->type);
SP += np;
//printf("**** NEW %s\n", class->name);
CLASS_load(class);
if (class->no_create)
THROW(E_CSTATIC, CLASS_get_name(class));
if (event)
{
SP--;
if (!TYPE_is_string(SP->type))
THROW_TYPE(T_STRING, SP->type);
name = STRING_copy_from_value_temp(SP);
//printf("**** name %s\n", class->name);
STRING_ref(name);
SP++;
object = OBJECT_new(class, name, ((OP == NULL) ? (OBJECT *)CP : (OBJECT *)OP));
SP--;
STRING_unref(&name);
RELEASE_STRING(SP);
np -= 2;
}
else
{
object = OBJECT_new(class, name, ((OP == NULL) ? (OBJECT *)CP : (OBJECT *)OP));
np--;
}
save = EVENT_enter_name(name);
TRY
{
OBJECT_lock(object, TRUE);
EXEC_special_inheritance(SPEC_NEW, class, object, np, TRUE);
OBJECT_lock(object, FALSE);
EVENT_leave_name(save);
SP--; /* class */
EXEC_special(SPEC_READY, class, object, 0, TRUE);
SP->_object.class = class;
SP->_object.object = object;
SP++;
}
CATCH
{
EVENT_leave_name(save);
// _free() methods should not be called, but we must
OBJECT_UNREF(object);
//(*class->free)(class, object);
SP--; /* class */
SP->type = T_NULL;
SP++;
PROPAGATE();
}
END_TRY
}
void EXEC_do_quit(void)
{
GAMBAS_DoNotRaiseEvent = TRUE;
JIT_abort();
HOOK(quit)();
THROW(E_ABORT);
}
void *EXEC_auto_create(CLASS *class, bool ref)
{
void *object;
object = CLASS_auto_create(class, 0); /* object is checked by CLASS_auto_create */
/*if (class->must_check && (*(class->check))(object))
THROW(E_IOBJECT);*/
if (ref)
OBJECT_REF(object);
return object;
}
void EXEC_dup(int n)
{
VALUE *src;
STACK_check(n);
src = SP - n;
while (n > 0)
{
BORROW(src);
*SP++ = *src++;
n--;
}
}
void EXEC_push_complex(void)
{
static void *(*func)(double) = NULL;
void *ob;
SP--;
if (SP->type < T_INTEGER || SP->type > T_FLOAT)
THROW_ILLEGAL();
SP++;
if (!func)
{
if (COMPONENT_get_info("PUSH_COMPLEX", POINTER(&func)))
{
COMPONENT_load(COMPONENT_create("gb.complex"));
if (COMPONENT_get_info("PUSH_COMPLEX", POINTER(&func)))
THROW(E_MATH);
}
}
SP--;
VALUE_conv_float(SP);
ob = (*func)(SP->_float.value);
SP->_object.object = ob;
SP->_object.class = OBJECT_class(ob);
OBJECT_REF(ob);
SP++;
}
void EXEC_push_vargs(void)
{
int i;
int nargs = (FP && FP->vararg) ? BP - PP : 0;
if (nargs == 0)
return;
STACK_check(nargs);
for (i = 0; i < nargs; i++)
{
*SP = PP[i];
PUSH();
}
PC[1] += nargs;
}
void EXEC_end_vargs(void)
{
int nargs = (FP && FP->vararg) ? BP - PP : 0;
PC[-1] -= nargs;
}
void EXEC_drop_vargs(void)
{
int nargs = (FP && FP->vararg) ? BP - PP : 0;
RELEASE_MANY(SP, nargs);
PC[-1] -= nargs;
}