Benoît Minisini 0fcacdebdf Raise a "Mathematic error" if the real or imaginary part of a complex number is not finite.
[GB.COMPLEX]
* NEW: Raise a "Mathematic error" if the real or imaginary part of a complex number is not finite.
2022-11-29 20:52:14 +01:00

544 lines
10 KiB
C

/***************************************************************************
ccomplex.c
(c) 2000-2017 Benoît Minisini <benoit.minisini@gambas-basic.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.
***************************************************************************/
#define __CCOMPLEX_C
#include "ccomplex.h"
#define THIS ((CCOMPLEX *)_object)
#define RE(_c) ((_c)->v[0])
#define IM(_c) ((_c)->v[1])
#define ABS(_c) (hypot(RE(_c), IM(_c)))
#define ABS2(_c) (RE(_c) * RE(_c) + IM(_c) * IM(_c))
#define ZERO(_c) (RE(_c) == 0.0 && IM(_c) == 0.0)
//---- Complex number creation ----------------------------------------------
CCOMPLEX *COMPLEX_create(double re, double im)
{
static GB_CLASS CLASS_Complex = (GB_CLASS)NULL;
CCOMPLEX *c;
if (!isfinite(re) || !isfinite(im))
{
GB.Error(GB_ERR_MATH);
return NULL;
}
if (!CLASS_Complex)
CLASS_Complex = GB.FindClass("Complex");
c = (CCOMPLEX *)GB.New(CLASS_Complex, NULL, NULL);
c->v[0] = re;
c->v[1] = im;
return c;
}
//#define COMPLEX_make(_a, _re, _im) (((_a)->ob.ref <= 1) ? ((_a)->v[0] = (_re), (_a)->v[1] = (_im), (_a)) : COMPLEX_create((_re), (_im)))
static inline CCOMPLEX *COMPLEX_make(CCOMPLEX *a, const double re, const double im)
{
if (a->ob.ref <= 1)
{
if (!isfinite(re) || !isfinite(im))
{
GB.Error(GB_ERR_MATH);
return NULL;
}
a->v[0] = re;
a->v[1] = im;
return a;
}
else
return COMPLEX_create(re, im);
}
CCOMPLEX *COMPLEX_push_complex(double value)
{
return COMPLEX_create(0, value);
}
//---- Arithmetic operators -------------------------------------------------
static CCOMPLEX *_addf(CCOMPLEX *a, double f, bool invert)
{
return COMPLEX_make(a, RE(a) + f, IM(a));
}
static CCOMPLEX *_add(CCOMPLEX *a, CCOMPLEX *b, bool invert)
{
return COMPLEX_make(a, RE(a) + RE(b), IM(a) + IM(b));
}
static CCOMPLEX *_subf(CCOMPLEX *a, double f, bool invert)
{
if (invert)
return COMPLEX_make(a, f - RE(a), -IM(a));
else
return COMPLEX_make(a, RE(a) - f, IM(a));
}
static CCOMPLEX *_sub(CCOMPLEX *a, CCOMPLEX *b, bool invert)
{
return COMPLEX_make(a, RE(a) - RE(b), IM(a) - IM(b));
}
static CCOMPLEX *_mulf(CCOMPLEX *a, double f, bool invert)
{
return COMPLEX_make(a, RE(a) * f, IM(a) * f);
}
static CCOMPLEX *_mul(CCOMPLEX *a, CCOMPLEX *b, bool invert)
{
return COMPLEX_make(a, RE(a) * RE(b) - IM(a) * IM(b), RE(a) * IM(b) + IM(a) * RE(b));
}
static CCOMPLEX *_divf(CCOMPLEX *a, double f, bool invert)
{
if (invert)
{
if (ZERO(a))
return NULL;
double s = ABS2(a);
double re, im;
re = RE(a) / s;
im = -IM(a) / s;
return COMPLEX_make(a, re * f, im * f);
}
else
{
if (f == 0.0)
return NULL;
return COMPLEX_make(a, RE(a) / f, IM(a) / f);
}
}
static CCOMPLEX *_div(CCOMPLEX *a, CCOMPLEX *b, bool invert)
{
double ar = RE(a), ai = IM(a);
double br = RE(b), bi = IM(b);
if (br == 0.0 && bi == 0.0)
return NULL;
double s = 1.0 / ( br * br + bi * bi );
double zr = (ar * br + ai * bi) * s;
double zi = (ai * br - ar * bi) * s;
return COMPLEX_make(a, zr, zi);
}
static int _equal(CCOMPLEX *a, CCOMPLEX *b, bool invert)
{
return RE(a) == RE(b) && IM(a) == IM(b);
}
static int _equalf(CCOMPLEX *a, double f, bool invert)
{
return RE(a) == f && IM(a) == 0;
}
static double _fabs(CCOMPLEX *a)
{
return ABS(a);
}
static CCOMPLEX *_neg(CCOMPLEX *a)
{
return COMPLEX_make(a, -RE(a), -IM(a));
}
double _logabs(CCOMPLEX *a)
{
double xabs = fabs(RE(a));
double yabs = fabs(IM(a));
double max, u;
if (xabs >= yabs)
{
max = xabs;
u = yabs / xabs;
}
else
{
max = yabs;
u = xabs / yabs;
}
/* Handle underflow when u is close to 0 */
return log(max) + 0.5 * log1p (u * u);
}
static double _arg(CCOMPLEX *a)
{
if (ZERO(a))
return 0.0;
else
return atan2(IM(a), RE(a));
}
static CCOMPLEX *_powi(CCOMPLEX *a, int i)
{
CCOMPLEX *r;
bool inv;
inv = i < 0;
i = abs(i);
if (i == 2)
r = _mul(a, a, FALSE);
else if (i == 3)
{
r = COMPLEX_create(RE(a), IM(a));
r = _mul(r, a, FALSE);
r = _mul(r, a, FALSE);
}
else if (i == 4)
{
a = _mul(a, a, FALSE);
r = _mul(a, a, FALSE);
}
else
r = COMPLEX_make(a, RE(a), IM(a));
if (inv)
return _divf(r, 1, TRUE);
else
return r;
}
static CCOMPLEX *_pow(CCOMPLEX *a, CCOMPLEX *b)
{
if (RE(a) == 0.0 && IM(a) == 0.0)
{
if (RE(b) == 0.0 && IM(b) == 0.0)
return COMPLEX_make(a, 1.0, 0.0);
else
return COMPLEX_make(a, 0.0, 0.0);
}
else if (IM(b) == 0.0)
{
if (RE(b) >= 4.0 && RE(b) <= -4.0 && RE(b) == (int)RE(b))
return _powi(a, (int)RE(b));
}
double logr = _logabs (a);
double theta = _arg(a);
double br = RE(b), bi = IM(b);
double rho = exp(logr * br - bi * theta);
double beta = theta * br + bi * logr;
return COMPLEX_make(a, rho * cos (beta), rho * sin (beta));
}
static CCOMPLEX *_powf(CCOMPLEX *a, double b)
{
if (RE(a) == 0.0 && IM(a) == 0.0)
{
if (b == 0.0)
return COMPLEX_make(a, 1.0, 0.0);
else
return COMPLEX_make(a, 0.0, 0.0);
}
else if (b == 0.0)
return COMPLEX_make(a, 1.0, 0.0);
else if (b <= 4.0 && b >= -4.0 && b == (int)b)
return _powi(a, (int)b);
else
{
double logr = _logabs (a);
double theta = _arg (a);
double rho = exp (logr * b);
double beta = theta * b;
return COMPLEX_make(a, rho * cos(beta), rho * sin(beta));
}
}
static GB_OPERATOR_DESC _operator =
{
.equal = (void *)_equal,
.equalf = (void *)_equalf,
.add = (void *)_add,
.addf = (void *)_addf,
.sub = (void *)_sub,
.subf = (void *)_subf,
.mul = (void *)_mul,
.mulf = (void *)_mulf,
.div = (void *)_div,
.divf = (void *)_divf,
.pow = (void *)_pow,
.powf = (void *)_powf,
.fabs = (void *)_fabs,
.neg = (void *)_neg
};
//---- Conversions ----------------------------------------------------------
char *COMPLEX_to_string(double real, double imag, bool local)
{
char buffer[64];
char *p;
char *str;
int len;
if (real == 0.0 && imag == 0.0)
return GB.NewString("0", 1);
p = buffer;
if (real != 0.0)
{
GB.NumberToString(local, real, NULL, &str, &len);
strncpy(p, str, len);
p += len;
}
if (imag != 0.0)
{
if (imag < 0.0)
{
*p++ = '-';
imag = (-imag);
}
else if (p != buffer)
*p++ = '+';
if (imag != 1.0)
{
GB.NumberToString(local, imag, NULL, &str, &len);
strncpy(p, str, len);
p += len;
}
*p++ = 'i';
}
return GB.NewString(buffer, p - buffer);
}
static bool _convert(CCOMPLEX *a, GB_TYPE type, GB_VALUE *conv)
{
if (a)
{
switch (type)
{
case GB_T_FLOAT:
if (IM(a))
return TRUE;
conv->_float.value = RE(a);
return FALSE;
case GB_T_SINGLE:
if (IM(a))
return TRUE;
conv->_single.value = RE(a);
return FALSE;
case GB_T_INTEGER:
case GB_T_SHORT:
case GB_T_BYTE:
if (IM(a))
return TRUE;
conv->_integer.value = RE(a);
return FALSE;
case GB_T_LONG:
if (IM(a))
return TRUE;
conv->_long.value = RE(a);
return FALSE;
case GB_T_STRING:
case GB_T_CSTRING:
conv->_string.value.addr = COMPLEX_to_string(RE(a), IM(a), type == GB_T_CSTRING);
conv->_string.value.start = 0;
conv->_string.value.len = GB.StringLength(conv->_string.value.addr);
return FALSE;
default:
return TRUE;
}
}
else
{
switch(type)
{
case GB_T_FLOAT:
conv->_object.value = COMPLEX_create(conv->_float.value, 0);
return FALSE;
case GB_T_SINGLE:
conv->_object.value = COMPLEX_create(conv->_single.value, 0);
return FALSE;
case GB_T_LONG:
conv->_object.value = COMPLEX_create((double)conv->_long.value, 0);
return FALSE;
case GB_T_INTEGER:
case GB_T_SHORT:
case GB_T_BYTE:
conv->_object.value = COMPLEX_create(conv->_integer.value, 0);
return FALSE;
default:
return TRUE;
}
}
}
//---------------------------------------------------------------------------
BEGIN_METHOD(Complex_new, GB_FLOAT real; GB_FLOAT imag)
THIS->v[0] = VARGOPT(real, 0.0);
THIS->v[1] = VARGOPT(imag, 0.0);
END_METHOD
BEGIN_METHOD(Complex_call, GB_FLOAT real; GB_FLOAT imag)
GB.ReturnObject(COMPLEX_create(VARG(real), VARG(imag)));
END_METHOD
BEGIN_METHOD_VOID(Complex_Copy)
GB.ReturnObject(COMPLEX_create(RE(THIS), IM(THIS)));
END_METHOD
BEGIN_METHOD(Complex_Polar, GB_FLOAT abs; GB_FLOAT arg)
double mod = VARG(abs);
double arg = VARG(arg);
GB.ReturnObject(COMPLEX_create(cos(arg) * mod, sin(arg) * mod));
END_METHOD
BEGIN_METHOD_VOID(Complex_Arg)
GB.ReturnFloat(_arg(THIS));
END_METHOD
BEGIN_METHOD_VOID(Complex_Abs)
GB.ReturnFloat(ABS(THIS));
END_METHOD
BEGIN_METHOD_VOID(Complex_Abs2)
GB.ReturnFloat(ABS2(THIS));
END_METHOD
BEGIN_PROPERTY(Complex_Real)
if (READ_PROPERTY)
GB.ReturnFloat(RE(THIS));
else
THIS->v[0] = VPROP(GB_FLOAT);
END_PROPERTY
BEGIN_PROPERTY(Complex_Imag)
if (READ_PROPERTY)
GB.ReturnFloat(IM(THIS));
else
THIS->v[1] = VPROP(GB_FLOAT);
END_PROPERTY
BEGIN_METHOD_VOID(Complex_Inv)
GB.ReturnObject(_divf(THIS, 1, TRUE));
END_METHOD
BEGIN_METHOD_VOID(Complex_Conj)
GB.ReturnObject(COMPLEX_create(RE(THIS), -IM(THIS)));
END_METHOD
BEGIN_METHOD(Complex_ToString, GB_BOOLEAN local)
GB.ReturnString(GB.FreeStringLater(COMPLEX_to_string(RE(THIS), IM(THIS), VARGOPT(local, FALSE))));
END_METHOD
//---------------------------------------------------------------------------
GB_DESC ComplexDesc[] =
{
GB_DECLARE("Complex", sizeof(CCOMPLEX)),
// Utility Methods
GB_METHOD("_new", NULL, Complex_new, "[(Real)f(Imag)f]"),
GB_STATIC_METHOD("_call", "Complex", Complex_call, "[(Real)f(Imag)f]"),
GB_STATIC_METHOD("Polar", "Complex", Complex_Polar, "[(Abs)f(Arg)f]"),
GB_METHOD("Copy", "Complex", Complex_Copy, NULL),
GB_METHOD("ToString", "s", Complex_ToString, "[(Local)b]"),
GB_PROPERTY("Real", "f", Complex_Real),
GB_PROPERTY("Imag", "f", Complex_Imag),
GB_METHOD("Abs2", "f", Complex_Abs2, NULL),
GB_METHOD("Arg", "f", Complex_Arg, NULL),
GB_METHOD("Conj", "Complex", Complex_Conj, NULL),
GB_METHOD("Inv", "Complex", Complex_Inv, NULL),
GB_INTERFACE("_operator", &_operator),
GB_INTERFACE("_convert", &_convert),
GB_END_DECLARE
};