0fcacdebdf
[GB.COMPLEX] * NEW: Raise a "Mathematic error" if the real or imaginary part of a complex number is not finite.
544 lines
10 KiB
C
544 lines
10 KiB
C
/***************************************************************************
|
|
|
|
ccomplex.c
|
|
|
|
(c) 2000-2017 Benoît Minisini <benoit.minisini@gambas-basic.org>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
MA 02110-1301, USA.
|
|
|
|
***************************************************************************/
|
|
|
|
#define __CCOMPLEX_C
|
|
|
|
#include "ccomplex.h"
|
|
|
|
#define THIS ((CCOMPLEX *)_object)
|
|
#define RE(_c) ((_c)->v[0])
|
|
#define IM(_c) ((_c)->v[1])
|
|
#define ABS(_c) (hypot(RE(_c), IM(_c)))
|
|
#define ABS2(_c) (RE(_c) * RE(_c) + IM(_c) * IM(_c))
|
|
#define ZERO(_c) (RE(_c) == 0.0 && IM(_c) == 0.0)
|
|
|
|
|
|
//---- Complex number creation ----------------------------------------------
|
|
|
|
CCOMPLEX *COMPLEX_create(double re, double im)
|
|
{
|
|
static GB_CLASS CLASS_Complex = (GB_CLASS)NULL;
|
|
CCOMPLEX *c;
|
|
|
|
if (!isfinite(re) || !isfinite(im))
|
|
{
|
|
GB.Error(GB_ERR_MATH);
|
|
return NULL;
|
|
}
|
|
|
|
if (!CLASS_Complex)
|
|
CLASS_Complex = GB.FindClass("Complex");
|
|
|
|
c = (CCOMPLEX *)GB.New(CLASS_Complex, NULL, NULL);
|
|
c->v[0] = re;
|
|
c->v[1] = im;
|
|
|
|
return c;
|
|
}
|
|
|
|
//#define COMPLEX_make(_a, _re, _im) (((_a)->ob.ref <= 1) ? ((_a)->v[0] = (_re), (_a)->v[1] = (_im), (_a)) : COMPLEX_create((_re), (_im)))
|
|
|
|
static inline CCOMPLEX *COMPLEX_make(CCOMPLEX *a, const double re, const double im)
|
|
{
|
|
if (a->ob.ref <= 1)
|
|
{
|
|
if (!isfinite(re) || !isfinite(im))
|
|
{
|
|
GB.Error(GB_ERR_MATH);
|
|
return NULL;
|
|
}
|
|
|
|
a->v[0] = re;
|
|
a->v[1] = im;
|
|
return a;
|
|
}
|
|
else
|
|
return COMPLEX_create(re, im);
|
|
}
|
|
|
|
CCOMPLEX *COMPLEX_push_complex(double value)
|
|
{
|
|
return COMPLEX_create(0, value);
|
|
}
|
|
|
|
//---- Arithmetic operators -------------------------------------------------
|
|
|
|
static CCOMPLEX *_addf(CCOMPLEX *a, double f, bool invert)
|
|
{
|
|
return COMPLEX_make(a, RE(a) + f, IM(a));
|
|
}
|
|
|
|
static CCOMPLEX *_add(CCOMPLEX *a, CCOMPLEX *b, bool invert)
|
|
{
|
|
return COMPLEX_make(a, RE(a) + RE(b), IM(a) + IM(b));
|
|
}
|
|
|
|
static CCOMPLEX *_subf(CCOMPLEX *a, double f, bool invert)
|
|
{
|
|
if (invert)
|
|
return COMPLEX_make(a, f - RE(a), -IM(a));
|
|
else
|
|
return COMPLEX_make(a, RE(a) - f, IM(a));
|
|
}
|
|
|
|
static CCOMPLEX *_sub(CCOMPLEX *a, CCOMPLEX *b, bool invert)
|
|
{
|
|
return COMPLEX_make(a, RE(a) - RE(b), IM(a) - IM(b));
|
|
}
|
|
|
|
static CCOMPLEX *_mulf(CCOMPLEX *a, double f, bool invert)
|
|
{
|
|
return COMPLEX_make(a, RE(a) * f, IM(a) * f);
|
|
}
|
|
|
|
static CCOMPLEX *_mul(CCOMPLEX *a, CCOMPLEX *b, bool invert)
|
|
{
|
|
return COMPLEX_make(a, RE(a) * RE(b) - IM(a) * IM(b), RE(a) * IM(b) + IM(a) * RE(b));
|
|
}
|
|
|
|
static CCOMPLEX *_divf(CCOMPLEX *a, double f, bool invert)
|
|
{
|
|
if (invert)
|
|
{
|
|
if (ZERO(a))
|
|
return NULL;
|
|
|
|
double s = ABS2(a);
|
|
double re, im;
|
|
|
|
re = RE(a) / s;
|
|
im = -IM(a) / s;
|
|
|
|
return COMPLEX_make(a, re * f, im * f);
|
|
}
|
|
else
|
|
{
|
|
if (f == 0.0)
|
|
return NULL;
|
|
|
|
return COMPLEX_make(a, RE(a) / f, IM(a) / f);
|
|
}
|
|
}
|
|
|
|
static CCOMPLEX *_div(CCOMPLEX *a, CCOMPLEX *b, bool invert)
|
|
{
|
|
double ar = RE(a), ai = IM(a);
|
|
double br = RE(b), bi = IM(b);
|
|
|
|
if (br == 0.0 && bi == 0.0)
|
|
return NULL;
|
|
|
|
double s = 1.0 / ( br * br + bi * bi );
|
|
|
|
double zr = (ar * br + ai * bi) * s;
|
|
double zi = (ai * br - ar * bi) * s;
|
|
|
|
return COMPLEX_make(a, zr, zi);
|
|
|
|
}
|
|
|
|
static int _equal(CCOMPLEX *a, CCOMPLEX *b, bool invert)
|
|
{
|
|
return RE(a) == RE(b) && IM(a) == IM(b);
|
|
}
|
|
|
|
static int _equalf(CCOMPLEX *a, double f, bool invert)
|
|
{
|
|
return RE(a) == f && IM(a) == 0;
|
|
}
|
|
|
|
static double _fabs(CCOMPLEX *a)
|
|
{
|
|
return ABS(a);
|
|
}
|
|
|
|
static CCOMPLEX *_neg(CCOMPLEX *a)
|
|
{
|
|
return COMPLEX_make(a, -RE(a), -IM(a));
|
|
}
|
|
|
|
double _logabs(CCOMPLEX *a)
|
|
{
|
|
double xabs = fabs(RE(a));
|
|
double yabs = fabs(IM(a));
|
|
double max, u;
|
|
|
|
if (xabs >= yabs)
|
|
{
|
|
max = xabs;
|
|
u = yabs / xabs;
|
|
}
|
|
else
|
|
{
|
|
max = yabs;
|
|
u = xabs / yabs;
|
|
}
|
|
|
|
/* Handle underflow when u is close to 0 */
|
|
return log(max) + 0.5 * log1p (u * u);
|
|
}
|
|
|
|
static double _arg(CCOMPLEX *a)
|
|
{
|
|
if (ZERO(a))
|
|
return 0.0;
|
|
else
|
|
return atan2(IM(a), RE(a));
|
|
}
|
|
|
|
static CCOMPLEX *_powi(CCOMPLEX *a, int i)
|
|
{
|
|
CCOMPLEX *r;
|
|
bool inv;
|
|
|
|
inv = i < 0;
|
|
i = abs(i);
|
|
|
|
if (i == 2)
|
|
r = _mul(a, a, FALSE);
|
|
else if (i == 3)
|
|
{
|
|
r = COMPLEX_create(RE(a), IM(a));
|
|
r = _mul(r, a, FALSE);
|
|
r = _mul(r, a, FALSE);
|
|
}
|
|
else if (i == 4)
|
|
{
|
|
a = _mul(a, a, FALSE);
|
|
r = _mul(a, a, FALSE);
|
|
}
|
|
else
|
|
r = COMPLEX_make(a, RE(a), IM(a));
|
|
|
|
if (inv)
|
|
return _divf(r, 1, TRUE);
|
|
else
|
|
return r;
|
|
}
|
|
|
|
static CCOMPLEX *_pow(CCOMPLEX *a, CCOMPLEX *b)
|
|
{
|
|
if (RE(a) == 0.0 && IM(a) == 0.0)
|
|
{
|
|
if (RE(b) == 0.0 && IM(b) == 0.0)
|
|
return COMPLEX_make(a, 1.0, 0.0);
|
|
else
|
|
return COMPLEX_make(a, 0.0, 0.0);
|
|
}
|
|
else if (IM(b) == 0.0)
|
|
{
|
|
if (RE(b) >= 4.0 && RE(b) <= -4.0 && RE(b) == (int)RE(b))
|
|
return _powi(a, (int)RE(b));
|
|
}
|
|
|
|
double logr = _logabs (a);
|
|
double theta = _arg(a);
|
|
|
|
double br = RE(b), bi = IM(b);
|
|
|
|
double rho = exp(logr * br - bi * theta);
|
|
double beta = theta * br + bi * logr;
|
|
|
|
return COMPLEX_make(a, rho * cos (beta), rho * sin (beta));
|
|
}
|
|
|
|
static CCOMPLEX *_powf(CCOMPLEX *a, double b)
|
|
{
|
|
if (RE(a) == 0.0 && IM(a) == 0.0)
|
|
{
|
|
if (b == 0.0)
|
|
return COMPLEX_make(a, 1.0, 0.0);
|
|
else
|
|
return COMPLEX_make(a, 0.0, 0.0);
|
|
}
|
|
else if (b == 0.0)
|
|
return COMPLEX_make(a, 1.0, 0.0);
|
|
else if (b <= 4.0 && b >= -4.0 && b == (int)b)
|
|
return _powi(a, (int)b);
|
|
else
|
|
{
|
|
double logr = _logabs (a);
|
|
double theta = _arg (a);
|
|
double rho = exp (logr * b);
|
|
double beta = theta * b;
|
|
|
|
return COMPLEX_make(a, rho * cos(beta), rho * sin(beta));
|
|
}
|
|
}
|
|
|
|
static GB_OPERATOR_DESC _operator =
|
|
{
|
|
.equal = (void *)_equal,
|
|
.equalf = (void *)_equalf,
|
|
.add = (void *)_add,
|
|
.addf = (void *)_addf,
|
|
.sub = (void *)_sub,
|
|
.subf = (void *)_subf,
|
|
.mul = (void *)_mul,
|
|
.mulf = (void *)_mulf,
|
|
.div = (void *)_div,
|
|
.divf = (void *)_divf,
|
|
.pow = (void *)_pow,
|
|
.powf = (void *)_powf,
|
|
.fabs = (void *)_fabs,
|
|
.neg = (void *)_neg
|
|
};
|
|
|
|
//---- Conversions ----------------------------------------------------------
|
|
|
|
char *COMPLEX_to_string(double real, double imag, bool local)
|
|
{
|
|
char buffer[64];
|
|
char *p;
|
|
char *str;
|
|
int len;
|
|
|
|
if (real == 0.0 && imag == 0.0)
|
|
return GB.NewString("0", 1);
|
|
|
|
p = buffer;
|
|
|
|
if (real != 0.0)
|
|
{
|
|
GB.NumberToString(local, real, NULL, &str, &len);
|
|
strncpy(p, str, len);
|
|
p += len;
|
|
}
|
|
|
|
if (imag != 0.0)
|
|
{
|
|
if (imag < 0.0)
|
|
{
|
|
*p++ = '-';
|
|
imag = (-imag);
|
|
}
|
|
else if (p != buffer)
|
|
*p++ = '+';
|
|
|
|
if (imag != 1.0)
|
|
{
|
|
GB.NumberToString(local, imag, NULL, &str, &len);
|
|
strncpy(p, str, len);
|
|
p += len;
|
|
}
|
|
*p++ = 'i';
|
|
}
|
|
|
|
return GB.NewString(buffer, p - buffer);
|
|
}
|
|
|
|
static bool _convert(CCOMPLEX *a, GB_TYPE type, GB_VALUE *conv)
|
|
{
|
|
if (a)
|
|
{
|
|
switch (type)
|
|
{
|
|
case GB_T_FLOAT:
|
|
if (IM(a))
|
|
return TRUE;
|
|
conv->_float.value = RE(a);
|
|
return FALSE;
|
|
|
|
case GB_T_SINGLE:
|
|
if (IM(a))
|
|
return TRUE;
|
|
conv->_single.value = RE(a);
|
|
return FALSE;
|
|
|
|
case GB_T_INTEGER:
|
|
case GB_T_SHORT:
|
|
case GB_T_BYTE:
|
|
if (IM(a))
|
|
return TRUE;
|
|
conv->_integer.value = RE(a);
|
|
return FALSE;
|
|
|
|
case GB_T_LONG:
|
|
if (IM(a))
|
|
return TRUE;
|
|
conv->_long.value = RE(a);
|
|
return FALSE;
|
|
|
|
case GB_T_STRING:
|
|
case GB_T_CSTRING:
|
|
conv->_string.value.addr = COMPLEX_to_string(RE(a), IM(a), type == GB_T_CSTRING);
|
|
conv->_string.value.start = 0;
|
|
conv->_string.value.len = GB.StringLength(conv->_string.value.addr);
|
|
return FALSE;
|
|
|
|
default:
|
|
return TRUE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch(type)
|
|
{
|
|
case GB_T_FLOAT:
|
|
conv->_object.value = COMPLEX_create(conv->_float.value, 0);
|
|
return FALSE;
|
|
|
|
case GB_T_SINGLE:
|
|
conv->_object.value = COMPLEX_create(conv->_single.value, 0);
|
|
return FALSE;
|
|
|
|
case GB_T_LONG:
|
|
conv->_object.value = COMPLEX_create((double)conv->_long.value, 0);
|
|
return FALSE;
|
|
|
|
case GB_T_INTEGER:
|
|
case GB_T_SHORT:
|
|
case GB_T_BYTE:
|
|
conv->_object.value = COMPLEX_create(conv->_integer.value, 0);
|
|
return FALSE;
|
|
|
|
default:
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
BEGIN_METHOD(Complex_new, GB_FLOAT real; GB_FLOAT imag)
|
|
|
|
THIS->v[0] = VARGOPT(real, 0.0);
|
|
THIS->v[1] = VARGOPT(imag, 0.0);
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD(Complex_call, GB_FLOAT real; GB_FLOAT imag)
|
|
|
|
GB.ReturnObject(COMPLEX_create(VARG(real), VARG(imag)));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Copy)
|
|
|
|
GB.ReturnObject(COMPLEX_create(RE(THIS), IM(THIS)));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD(Complex_Polar, GB_FLOAT abs; GB_FLOAT arg)
|
|
|
|
double mod = VARG(abs);
|
|
double arg = VARG(arg);
|
|
|
|
GB.ReturnObject(COMPLEX_create(cos(arg) * mod, sin(arg) * mod));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Arg)
|
|
|
|
GB.ReturnFloat(_arg(THIS));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Abs)
|
|
|
|
GB.ReturnFloat(ABS(THIS));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Abs2)
|
|
|
|
GB.ReturnFloat(ABS2(THIS));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_PROPERTY(Complex_Real)
|
|
|
|
if (READ_PROPERTY)
|
|
GB.ReturnFloat(RE(THIS));
|
|
else
|
|
THIS->v[0] = VPROP(GB_FLOAT);
|
|
|
|
END_PROPERTY
|
|
|
|
|
|
BEGIN_PROPERTY(Complex_Imag)
|
|
|
|
if (READ_PROPERTY)
|
|
GB.ReturnFloat(IM(THIS));
|
|
else
|
|
THIS->v[1] = VPROP(GB_FLOAT);
|
|
|
|
END_PROPERTY
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Inv)
|
|
|
|
GB.ReturnObject(_divf(THIS, 1, TRUE));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD_VOID(Complex_Conj)
|
|
|
|
GB.ReturnObject(COMPLEX_create(RE(THIS), -IM(THIS)));
|
|
|
|
END_METHOD
|
|
|
|
|
|
BEGIN_METHOD(Complex_ToString, GB_BOOLEAN local)
|
|
|
|
GB.ReturnString(GB.FreeStringLater(COMPLEX_to_string(RE(THIS), IM(THIS), VARGOPT(local, FALSE))));
|
|
|
|
END_METHOD
|
|
|
|
//---------------------------------------------------------------------------
|
|
|
|
GB_DESC ComplexDesc[] =
|
|
{
|
|
GB_DECLARE("Complex", sizeof(CCOMPLEX)),
|
|
|
|
// Utility Methods
|
|
GB_METHOD("_new", NULL, Complex_new, "[(Real)f(Imag)f]"),
|
|
GB_STATIC_METHOD("_call", "Complex", Complex_call, "[(Real)f(Imag)f]"),
|
|
GB_STATIC_METHOD("Polar", "Complex", Complex_Polar, "[(Abs)f(Arg)f]"),
|
|
|
|
GB_METHOD("Copy", "Complex", Complex_Copy, NULL),
|
|
GB_METHOD("ToString", "s", Complex_ToString, "[(Local)b]"),
|
|
|
|
GB_PROPERTY("Real", "f", Complex_Real),
|
|
GB_PROPERTY("Imag", "f", Complex_Imag),
|
|
|
|
GB_METHOD("Abs2", "f", Complex_Abs2, NULL),
|
|
GB_METHOD("Arg", "f", Complex_Arg, NULL),
|
|
|
|
GB_METHOD("Conj", "Complex", Complex_Conj, NULL),
|
|
GB_METHOD("Inv", "Complex", Complex_Inv, NULL),
|
|
|
|
GB_INTERFACE("_operator", &_operator),
|
|
GB_INTERFACE("_convert", &_convert),
|
|
|
|
GB_END_DECLARE
|
|
};
|