gambas-source-code/gb.httpd/src/timers.c
Laurent Carlier f1deb8e330 Remove register keyword, deprecated, now reserved keyword with C++17
Fixes "warning: 'register' storage class specifier is deprecated and incompatible with C++17 [-Wdeprecated-register]"
with clang

https://en.cppreference.com/w/cpp/keyword/register
2019-10-30 06:53:09 +00:00

334 lines
7.3 KiB
C

/* timers.c - simple timer routines
**
** (c) 1995,1998,2000 by Jef Poskanzer <jef@mail.acme.com>.
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
** ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
** IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
** ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
** FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
** OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
** HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
** OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
** SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdlib.h>
#include <stdio.h>
//#include <syslog.h>
#include "main.h"
#include "timers.h"
#define HASH_SIZE 67
static Timer *timers[HASH_SIZE];
static Timer *free_timers;
static int alloc_count, active_count, free_count;
ClientData JunkClientData;
static unsigned int hash(Timer * t)
{
/* We can hash on the trigger time, even though it can change over
** the life of a timer via either the periodic bit or the tmr_reset()
** call. This is because both of those guys call l_resort(), which
** recomputes the hash and moves the timer to the appropriate list.
*/
return ((unsigned int) t->time.tv_sec ^
(unsigned int) t->time.tv_usec) % HASH_SIZE;
}
static void l_add(Timer * t)
{
int h = t->hash;
Timer *t2;
Timer *t2prev;
t2 = timers[h];
if (t2 == (Timer *) 0)
{
/* The list is empty. */
timers[h] = t;
t->prev = t->next = (Timer *) 0;
}
else
{
if (t->time.tv_sec < t2->time.tv_sec ||
(t->time.tv_sec == t2->time.tv_sec &&
t->time.tv_usec <= t2->time.tv_usec))
{
/* The new timer goes at the head of the list. */
timers[h] = t;
t->prev = (Timer *) 0;
t->next = t2;
t2->prev = t;
}
else
{
/* Walk the list to find the insertion point. */
for (t2prev = t2, t2 = t2->next; t2 != (Timer *) 0;
t2prev = t2, t2 = t2->next)
{
if (t->time.tv_sec < t2->time.tv_sec ||
(t->time.tv_sec == t2->time.tv_sec &&
t->time.tv_usec <= t2->time.tv_usec))
{
/* Found it. */
t2prev->next = t;
t->prev = t2prev;
t->next = t2;
t2->prev = t;
return;
}
}
/* Oops, got to the end of the list. Add to tail. */
t2prev->next = t;
t->prev = t2prev;
t->next = (Timer *) 0;
}
}
}
static void l_remove(Timer * t)
{
int h = t->hash;
if (t->prev == (Timer *) 0)
timers[h] = t->next;
else
t->prev->next = t->next;
if (t->next != (Timer *) 0)
t->next->prev = t->prev;
}
static void l_resort(Timer * t)
{
/* Remove the timer from its old list. */
l_remove(t);
/* Recompute the hash. */
t->hash = hash(t);
/* And add it back in to its new list, sorted correctly. */
l_add(t);
}
void tmr_init(void)
{
int h;
for (h = 0; h < HASH_SIZE; ++h)
timers[h] = (Timer *) 0;
free_timers = (Timer *) 0;
alloc_count = active_count = free_count = 0;
}
Timer *tmr_create(struct timeval *nowP, TimerProc * timer_proc,
ClientData client_data, long msecs, int periodic)
{
Timer *t;
if (free_timers != (Timer *) 0)
{
t = free_timers;
free_timers = t->next;
--free_count;
}
else
{
t = (Timer *) malloc(sizeof(Timer));
if (t == (Timer *) 0)
return (Timer *) 0;
++alloc_count;
}
t->timer_proc = timer_proc;
t->client_data = client_data;
t->msecs = msecs;
t->periodic = periodic;
if (nowP != (struct timeval *) 0)
t->time = *nowP;
else
(void) gettimeofday(&t->time, (struct timezone *) 0);
t->time.tv_sec += msecs / 1000L;
t->time.tv_usec += (msecs % 1000L) * 1000L;
if (t->time.tv_usec >= 1000000L)
{
t->time.tv_sec += t->time.tv_usec / 1000000L;
t->time.tv_usec %= 1000000L;
}
t->hash = hash(t);
/* Add the new timer to the proper active list. */
l_add(t);
++active_count;
return t;
}
struct timeval *tmr_timeout(struct timeval *nowP)
{
long msecs;
static struct timeval timeout;
msecs = tmr_mstimeout(nowP);
if (msecs == INFTIM)
return (struct timeval *) 0;
timeout.tv_sec = msecs / 1000L;
timeout.tv_usec = (msecs % 1000L) * 1000L;
return &timeout;
}
long tmr_mstimeout(struct timeval *nowP)
{
int h;
int gotone;
long msecs, m;
Timer *t;
gotone = 0;
msecs = 0; /* make lint happy */
/* Since the lists are sorted, we only need to look at the
** first timer on each one.
*/
for (h = 0; h < HASH_SIZE; ++h)
{
t = timers[h];
if (t != (Timer *) 0)
{
m = (t->time.tv_sec - nowP->tv_sec) * 1000L +
(t->time.tv_usec - nowP->tv_usec) / 1000L;
if (!gotone)
{
msecs = m;
gotone = 1;
}
else if (m < msecs)
msecs = m;
}
}
if (!gotone)
return INFTIM;
if (msecs <= 0)
msecs = 0;
return msecs;
}
void tmr_run(struct timeval *nowP)
{
int h;
Timer *t;
Timer *next;
for (h = 0; h < HASH_SIZE; ++h)
for (t = timers[h]; t != (Timer *) 0; t = next)
{
next = t->next;
/* Since the lists are sorted, as soon as we find a timer
** that isn't ready yet, we can go on to the next list.
*/
if (t->time.tv_sec > nowP->tv_sec ||
(t->time.tv_sec == nowP->tv_sec && t->time.tv_usec > nowP->tv_usec))
break;
(t->timer_proc) (t->client_data, nowP);
if (t->periodic)
{
/* Reschedule. */
t->time.tv_sec += t->msecs / 1000L;
t->time.tv_usec += (t->msecs % 1000L) * 1000L;
if (t->time.tv_usec >= 1000000L)
{
t->time.tv_sec += t->time.tv_usec / 1000000L;
t->time.tv_usec %= 1000000L;
}
l_resort(t);
}
else
tmr_cancel(t);
}
}
void tmr_reset(struct timeval *nowP, Timer * t)
{
t->time = *nowP;
t->time.tv_sec += t->msecs / 1000L;
t->time.tv_usec += (t->msecs % 1000L) * 1000L;
if (t->time.tv_usec >= 1000000L)
{
t->time.tv_sec += t->time.tv_usec / 1000000L;
t->time.tv_usec %= 1000000L;
}
l_resort(t);
}
void tmr_cancel(Timer * t)
{
/* Remove it from its active list. */
l_remove(t);
--active_count;
/* And put it on the free list. */
t->next = free_timers;
free_timers = t;
++free_count;
t->prev = (Timer *) 0;
}
void tmr_cleanup(void)
{
Timer *t;
while (free_timers != (Timer *) 0)
{
t = free_timers;
free_timers = t->next;
--free_count;
free((void *) t);
--alloc_count;
}
}
void tmr_destroy(void)
{
int h;
for (h = 0; h < HASH_SIZE; ++h)
while (timers[h] != (Timer *) 0)
tmr_cancel(timers[h]);
tmr_cleanup();
}
/* Generate debugging statistics syslog message. */
void tmr_logstats(long secs)
{
syslog(LOG_INFO, " timers - %d allocated, %d active, %d free",
alloc_count, active_count, free_count);
if (active_count + free_count != alloc_count)
syslog(LOG_ERR, "timer counts don't add up!");
}